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Abstract

Standard game theory assumes purely selfish or rational individual behavior, which

means that every player will just act to optimize his own payoff function regardless

of the effects that their choices may have on the others. However, many phenomena

where people do care about others’ benefits can be observed in the real world. Exper-

iments also show discrepancy between experimental results and theoretical predictions

with the assumption of selfishness. Various explanations with “not entirely selfish” play-

ers perceiving “other-regarding” payoffs have been proposed. One of them is altruism

and spite among players.

Selfish outcomes have been observed to be drastically downgraded from the optimal

one in several natural games. Since players are not totally selfish, these predictions

may have been simply too pessimistic. Our goal in this thesis is studying the impact of

partially altruistic and spiteful behavior on the outcome of games, and specifically the

social welfare, in a social or economic network environment.

We develop and analyze a game-theoretic model with partially altruistic and spiteful

players situated in an economic or social network environment. We show the effects of

such a model on several problems: traffic routing, congestion games, network vaccina-

tion, and auctions. The trend of impact from altruism is different across classes of games.
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In particular, improvements on the Price of Anarchy are shown in routing games with

non-atomic partially altruistic users. However, this trend is not the case for congestion

games with atomic partially altruistic players in which the Price of Anarchy is increas-

ing with altruism, yet some special cases of congestion games still exhibit the trend of

improvements. Introducing partial altruism into network vaccination games can result

in no stable outcome, which even changes the game dynamics completely. We then draw

a roadmap of a few interesting future directions.
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Chapter 1

Introduction

Standard game theory assumes purely selfish or rational individual behavior, which

means that every player will just act to optimize his or her own payoff function regard-

less of the effects that their choices may have on the others. However, many phenomena

where people do care about others’ benefits or about their intentions can be observed

in the real world. Directly benefiting others, people do volunteering work; people make

donations to NGOs or charities. Indirectly benefiting the society, people choose to be

environmentally-friendly by driving hybrid cars, etc. On the other hand, people some-

times do want to harm or reduce the benefits of other people who they dislike. These

observations seem to be inconsistent with the assumption of selfishness.

Furthermore, the assumption of selfishness has been repeatedly questioned by econom-

ists and sociologists, with experiments showing a discrepancy from the prediction with

such an assumption. While the model of selfishness produces outcomes that are quite

consistent with some experiments such as competitive experimental markets, it fails in

1
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public goods and trust and reciprocity experiments, for instance, public goods contribu-

tion games and ultimatum bargaining [57, 58]. (A more detailed discussion can be found

in Chapter 3):

• In public goods contribution games, each player with a fixed initial endowment is

free to make a donation at a cost to himself to a common pool that will give a social

benefit greater than the contribution. Each should contribute all his endowment at

the social optimal outcome, but contributing nothing is a dominant strategy, i.e.,

everyone will be free riding. Yet, with as many as 10 or more players, experiments

found that players do contribute to the common pool. Total contributions can be

expected to lie between 40% to 60% of the social optimum.

• In ultimatum bargaining, the first player proposes a proportion to divide a fixed

amount of money, and the second player gets to accept or reject it. The first

player can make only one offer. If the second player accepts the offer, the money

is shared accordingly; if the second player rejects the offer, both players receive

nothing. According to the theory with selfishness, any division leaving the second

player with any non-zero amount should be accepted, so the first player should

demand at least the greatest amount less than the entire amount. In experiments,

surprisingly the first players do not propose a demand near to this amount, only

50 to 60 percent of the total being demanded in general and ungenerous demands

(but still significantly less than the total) even being rejected frequently.

All these imply that even for simple games in controlled environments (in the absence

of personal interaction or repeated experiments), participants do not really act selfishly;

2
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their behavior can be either friendly or the opposite, malicious, to other players. Many

explanations have been considered for this phenomenon. Most of them adopted simple

or more complicated revised models to explain experimental results, which are either

consistent or inconsistent with selfishness, for various kinds of games. Different types of

models with “other-regarding payoffs” have been developed: Levine brought up a model

of relative spite and altruism [58], which can be regarded as incorporating fairness, not

in the sense that players have a particular target to be considered “fair” by them, but in

the sense they are willing to be more altruistic to another player who is more altruistic

towards them. Fehr and Schmidt considered a model with an innate sense of fairness

[33], where in addition to purely selfish players, there are players who dislike inequitable

outcomes. They incur disutility when experiencing inequity if they are worse off or bet-

ter off in their original payoff terms than the other players. “Positive reciprocity” is a

motivation to repay generous or helpful behavior of another by behaving generously or

helpfully to the other person; thus, positively reciprocal behavior is conditional kind-

ness different from the unconditional kindness motivated by altruism [28]. Gintis et

al. explained cooperation among agents by reciprocity [42], where they showed that a

high level of cooperation can be attained when social groups have a sufficient fraction of

strong reciprocators.

In another line of work, people observe that in many games, the resulting outcomes

from selfish actions can be drastically different from the optimal one under a central

authority, in terms of certain global measures. In particular, the social welfare (or cost),

which is defined as the sum of all players’ utilities (or costs), is of interest in this context.

The ratio between the worst outcome of selfish choices and the socially optimal outcome

3



www.manaraa.com

has been termed the “Price of Anarchy” (PoA) by Koutsoupias and Papadimitriou [55]

to measure how much the overall performance of any outcome of selfish choices gets

downgraded compared to the optimum. Similarly, the “Price of Stability” (PoS) [2] is

then defined as the ratio between the best outcome of selfish choices and the socially

optimal outcome to capture how bad the overall performance will have to be if we

want that no player has an incentive to deviate. The formal definitions of different

equilibrium concepts of outcomes and the PoA and PoS are introduced in Section 2.1

and 2.2, respectively. The PoA or PoS of a lot of games have been shown to be quite

high. Time and again, the assumption of selfishness is questionable here. Is the PoA or

PoS really that bad or good in those games if players actually are not entirely selfish,

i.e., partially altruistic or spiteful?

Our goal in this thesis thus is

studying the impact of partially altruistic/spiteful behavior on the outcome

of games, and specifically the social welfare.

Specifically, we investigate the question whether and how Nash equilibria and the Price of

Anarchy (PoA), the Price of Stability (PoS), or the revenue (for auctions), will change if

players are assumed to be partially altruistic/spiteful, embedded in a social or economic

network environment.

To this end, we consider a natural model of altruism and spite, extending one pro-

posed by Ledyard [57, p. 154]. The model of altruism and spite is given formally in

Section 2.3. Intuitively, we want to model that players will trade off the benefit to

themselves against the benefit to others. This can be modeled by assuming that the

4
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perceived utility of each player is a linear combination of his own a priori payoff and

the payoffs of other players. Note that game theory is simultaneously a theory of utility

and a theory of play (equilibrium concepts) for strategic games [93]. However, a lot of

subsequent development of it has concentrated on the analysis of how to play games and

equilibrium concepts without looking into utility theory. This kind of interpretation of

game theory assuming players do not care about others’ payoffs or about their intentions

is only a special-case interpretation of game theory. What we try to do here is studying

the PoA/PoS via an interpretation of game theory with a more general utility theory,

since the previous analysis of the PoA/PoS is also subject to the limited interpretation

of game theory.

The second emphasis of this thesis is modeling the interaction relationship between

any pair of players in an economic or social network, which will definitely affect how

players perceive the outcomes. The interaction relationship can be nicely modeled as

a weighted (directed) edge between a pair of two nodes in a graph, where the weights

represent different altruism/spite levels between any pair of players.

For instance, imagine that a player who does not only care about his own benefit

but also the other players’ benefits, may become happier if his action does not only

bring a fair benefit to himself but also to the other players, or a player may become less

happy if another player who he competes with more gets allocated something valuable

instead of another one who he does not compete with or care about that much. Often,

such relationships between players can even be modeled just as that between a player

himself and all the others, whose benefits can be treated as a whole (namely, the social

welfare or social cost), as a special case so as to obtain interesting results. It roughly

5
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corresponds to people’s caring or awareness for the overall welfare or cost in the society,

and a parameter can be used to capture how strong this feeling is compared to selfish

incentives. Nevertheless, in the most general case, each player may care about each

other player quite differently. After all, it is natural for any player to prefer/dislike (and

therefore to be more altruistic/spiteful towards) any other player in a social or economic

setting.

In summary, we develop and analyze a game-theoretic model with partially altruis-

tic/spiteful players defined through their perceived utilities, situated in an economic or

social network environment. We show the impact of such a model on several problems,

in particular, traffic routing, congestion games, network vaccination, and auctions. The

trend of impact from altruism is different across classes of games. In particular, im-

provements on the PoA are shown in routing games with non-atomic partially altruistic

users. However, this trend is not the case for congestion games with atomic partially

altruistic players in which worsening of the PoA is proved, yet some special cases of

congestion games still exhibit the trend of improvements. Introducing partial altruism

into network vaccination games can result in no stable outcome, which even changes the

game dynamics completely. We then move on to drawing a roadmap of a few interesting

future directions.

We briefly summarize our results here.

6
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1.1 Traffic Routing

We consider traffic routing under the impact of altruism/spite as the first class of games

to examine. Roughgarden and Tardos [86] pioneered the study of the PoA for traffic

routing networks. They analyze a model proposed by Wardrop and Beckmann et al. [94,

8], in which edges possess traffic-dependent latency functions. When users choose a

certain path, they increase the traffic on all edges of the path, and thus also the latency

experienced by all other users sharing the path. This model of selfishness assumes,

in accordance with much of the game theory literature, that users choose their routes

completely without regard to the delay that their choice may cause for other users in the

system. The PoA can be bad under this model of selfishness. Nevertheless, as mentioned

above, if users are partially altruistic (i.e., when choosing a route, they care about the

latency experienced by all other users sharing the path besides minimizing their own

latency), we are interested in how the PoA will change. We can instantiate our general

model in the context of traffic routing.

The perceived “cost” of a user is a linear combination of his own latency and the

increase in latency the users causes others (precise definitions are given in Section 4.1).

By varying the altruism coefficient β (so each user does not differentiate other users yet

β can still vary among users), we can smoothly tune the altruism from spiteful (β = −1),

through selfish (β = 0), to entirely altruistic (β = 1).

Our first result is that if all users are (at least) β-altruistic, and β > 0, then the PoA

is always bounded by 1/β, for all networks, arbitrarily many commodities, and arbitrary

semi-convex latency functions on the edges. Thus, if a constant amount of altruism is

7
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introduced into the system, then the PoA is bounded by a constant. A more general

version of our result characterizes precisely the worst-case PoA for any class of latency

functions; from this general result, better bounds can be obtained for more restricted

classes of functions. Among others, our result implies a bound of 4
3+2β−β2 on the PoA

if all latency functions are linear. The general bound also lets us analyze the spite

resistance of a class of latency functions: the most spite under which the PoA would still

be finite.

We next extend our results beyond uniform altruism, and consider arbitrary distri-

butions of altruism among the players. In that scenario, even the existence of Nash

Equilibria is not obvious; we use a theorem of Mas-Collel [64] to prove that such games

with infinitely many agents indeed have Nash Equilibria. Even for single-commodity

flows in arbitrary graphs, prohibitive lower bounds on the PoA are known [12], so we

focus here on parallel link networks, studied for instance by Roughgarden [80].

For parallel link networks, we show that for any non-negative distribution of altruism

over the users in the network with average altruism level β̄, the PoA with convex edge

latency functions is always bounded by 1/β̄. In the specific case where the distribution of

altruism has only completely altruistic or completely selfish users, this matches a bound

obtained (with a polynomial-time algorithm) by Roughgarden [80].1 The bound of 1/β̄

follows from a more general result characterizing the PoA for arbitrary classes of convex

functions. In fact, that more general result, when applied to the case of a distribution

over entirely selfish and entirely altruistic users, implies tighter bounds for Stackelberg

routing compared with a result of Swamy [90]. Finally, we show that for the bound we

1Roughgarden’s bound for Stackelberg routing on parallel link networks applies to arbitrary functions,
whereas ours requires convexity.

8
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derive, the worst case is in fact attained by the {0, 1} altruism distribution, while the

best case is when all users are β̄-altruistic.

1.2 Congestion Games

We then consider a class of games generalizing routing games (i.e., network congestion

games), congestion games with atomic players. Notice that we are dealing with atomic

players whose individual size is 1, instead of non-atomic players whose individual size

is infinitesimal. Instead of just focusing on the most restricted equilibrium concept

to analyze the outcomes, we also relax the equilibrium concepts that we use to more

permissive ones. (For the formal definitions of different equilibrium concepts, refer to

Section 2.1.) Yet, we are only interested in partial altruism (so partial spite is not

discussed) and linear cost functions here.

Now we have seen how relaxing the assumption of selfishness change things. We

want to see what would happen if we also look at more general equilibrium concepts.

The adoption of Nash equilibria as a prescriptive solution concept implicitly assumes that

players are able to reach such equilibria. In particular, in light of several known hardness

results for finding Nash equilibria, this assumption is very suspect for computationally

bounded players. In response, recent work has begun analyzing the outcomes of natural

response dynamics [10, 11, 84], as well as more permissive solution concepts such as

correlated or coarse correlated equilibria [5, 44, 85]. This general direction of inquiry has

become known as “robust Price of Anarchy.”

9
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Thus, our goal is to begin a thorough investigation of the effects of relaxing both

of the standard assumptions simultaneously, i.e., considering the combination of weaker

solution concepts and notions of partially altruistic behavior by players. In Section

5.1, our formal definition of an n-player altruistic congestion game with parameters

(βi) falls under our general model of altruism (however, again with each player i not

differentiating other players j 6= i but his parameter βi can still be different from βj of

another player j for j 6= i). Note that our altruism model (despite also considering spite

there) in Section 4.1 can be seen as a non-atomic analogy of our model for atomic players

here: Informally, player i’s cost (or payoff) is a convex combination of (1− βi) times his

direct cost (or payoff) and βi times the social cost (or social welfare) for βi ranging from

pure selfishness (βi = 0) to pure altruism (βi = 1).

In order to analyze the degradation of system performance in light of partially al-

truistic behavior, we extend the notion of robust Price of Anarchy [84] to games with

partially altruistic players, and show that a suitably adapted notion of smoothness [84]

captures the properties of a system that determine its robust Price of Anarchy. We use

these insights to analyze (linear) congestion games: Players choose subsets of resources,

and as resources are chosen by many players, their cost increases (linearly), to all players

using them.

We derive tight bounds on the (robust) PoA for these games for uniform altruism,

i.e., βi = β for all i. The prevailing trend is rather unexpected: for congestion games, the

worst-case robust PoA actually increases (as (5 + 4β)/(2 + β)) with increasing altruism

β. The intuition behind the increase is the following: there are instances in which

all players get stuck choosing the wrong resources. A deviation by one player affects

10
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not only him, but also others: for congestion games, the player may increase the cost

on the resources he switches to. Thus, partially altruistic players have even stronger

disincentive to deviate from the suboptimal strategy, meaning that even worse system

states are stable.

The above explanation intuitively corresponds to altruistic players “accepting” more

states as “stable”. This suggests that the best stable solution can also be chosen from

a larger set, and the PoS should thus decrease. Our results lend partial support to this

intuition: for congestion games, we derive an upper bound on the PoS which decreases

as 2/(1 + β).

It should be noted that the increase in PoA is not a universal phenomenon. Indeed, for

linear symmetric singleton congestion games (in which all players have the same strategy

set, consisting of all sets of exactly one resource), we establish a bound of 4/(3+β) for the

PoA with respect to pure Nash equilibria (implying a bound of 4/3 when β = 0). This

bound is noteworthy not only because it shows improvements resulting from the presence

of altruism; it also establishes that pure Nash equilibria can result in strictly lower PoA

than weaker solution concepts.2 In particular, this establishes a natural example of a

class of games whose PoA can not be established using the smoothness framework. The

results are completed by a more in-depth analysis of the effects on the pure PoA of

combining players with different altruism levels in singleton congestion games, giving

bounds based on the proportion of players with different altruism levels.

2Lücking et al. [62] in the standard selfish setting gave an example of a class of congestion games
whose PoA under mixed Nash equilibria can be arbitrarily close to 2.

11
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1.3 Network Vaccination

We turn our attention to another class of network games yet with an entirely different

flavor from the previous routing or congestion games: network vaccination games, or

equivalently, network inoculation games.

Vaccinations or inoculations protect nodes in social or computer networks so that

they will not be affected by outbreaks of epidemics or computer viruses. As was evident

from the extensive coverage of vaccinations against virus spreading in networks, there are

many factors complicating the allocation of vaccines. Among the most prominent ones

are (1) supply shortages, limiting the number of individuals who can be vaccinated, and

(2) node autonomy: individuals make their own decisions on whether to get inoculated,

which may conflict with the socially optimal strategy. The former naturally leads to

optimization problems for allocating the limited amounts of vaccine, while the latter

raises natural questions about the inefficiency of outcomes in such settings. We dedicate

our efforts solely to address the latter issue of node autonomy.

We study this issue in a model for network vaccinations generalizing one proposed

by Aspnes et al. [4]. In this model, vaccinated nodes can never contract the disease, so

they are effectively removed from the network. After all vaccination decisions are made,

the disease will break out at a node v chosen with some probability pv and infect all

nodes reachable in the network (with the vaccinated nodes removed). There is a cost of

Cv associated with node v being vaccinated and a cost of Lv for v being infected. (A

formal description of the model is given in Section 6.1.1.) The optimum solution is one

finding a set of nodes to vaccinate that minimizes the expected total cost of all nodes.
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In reality, the decision of whether to get vaccinated usually lies with the individual

nodes, whose interests do not necessarily align with the social goal of minimizing the

total cost. Individuals tend to undervaccinate when they are not concerned with the im-

pact of their action on other nodes. It is therefore natural to investigate how inefficient

“societally stable” states can become as a result of individual decisions and their exter-

nalities. Indeed, Aspnes et al. [4] already showed that each instance of the inoculation

game has at least one pure Nash Equilibrium and that the PoA can be Θ(n) in the worst

case (but no worse).

The Θ(n) lower bound relies on the fact that individuals are entirely selfish in their

vaccination decisions, and completely unaware of — or indifferent to — how their deci-

sions may affect others in the network. Meier et al. [66] analyzed the impact of friendship

on stable outcomes. In their model, a node’s utility is the sum of its own cost and a

β fraction of the cost of all its neighbors. They showed that for some graphs, this no-

tion of friendship leads to significantly more efficient equilibria, while for others, the

improvement is small.

Here, we instead consider a notion of altruism using our model, which as been in-

stantiated in the context of routing and congestion games. Thus, our notion models a

general feeling of altruism or responsibility for the welfare of society, and the uniform

parameter β captures how strong this feeling is compared to selfish incentives. An al-

ternative interpretation of this model is that the cost of the disease is “socialized” to an

extent, e.g., that nodes’ health insurance rates increase if others catch the disease. The

parameter β then captures how steeply the individuals are penalized for others’ diseases.

13
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Interestingly, in the inoculation game with altruism, pure Nash Equilibria need not

always exist, as we show in Section 6.1.2. Even when they do exist, Nash Equilibria

can sometimes be as bad as in the model without altruism. Nonetheless, while the PoS

without altruism can also be Θ(n), a similar notion improves dramatically with the

altruistic model.

Since Nash Equilibria may not exist, the notion of “Price of Stability” does not apply

directly. Mixed Nash Equilibria are not a natural solution concept here, as vaccination

decisions tend to be permanent or very long-term. We therefore instead consider an

“Opt-Out” dynamic, and correspondingly define the Price of Opting Out. A benevolent

authority suggests an initial vaccination assignment S0. The nodes in S0 can choose to

opt out of being vaccinated, in any order. However, no node v /∈ S0 may opt to become

vaccinated. Also, nodes, once opted out, cannot opt back in. (Precise definitions are

given in Section 6.1.3.) This models a scenario in which individuals may choose to avoid

being vaccinated due to various concerns, but the authority will not revise plans vis-

à-vis nodes not originally included in the vaccination plan. Our main theorem (stated

formally and proved in Section 6.2) is then the following: The Price of Opting Out is at

most 1/β.

Thus, in a sense of somewhat limited autonomy among the nodes, our theorem estab-

lishes a 1/β bound on the social inefficiency introduced by individual nodes’ decisions.

Together with the Θ(n) bounds for PoA, and PoS without altruism, this result can

be interpreted as saying that coordination of vaccination strategies or socialization of

healthcare costs alone may not lead to societally desirable outcomes if individual nodes

can override suggestions. However, the combination of both, i.e., socializing costs and
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starting with a carefully chosen assignment, may lead to significantly more desirable

outcomes, even when individuals get to override the suggested vaccination strategies.

Naturally, it would be desirable to strengthen the results to the outcomes after arbi-

trary best-response dynamics. Since best-response dynamics may cycle for inoculation

games with partial altruism, we cannot focus on stable states alone, but would have to

consider all states reachable via best-response dynamics.

1.4 Auctions

As the last example application, we study the impact of social networks, altruism and

spite on auctions. Specifically, due to the forming of preference/dislike relations through

interactions, we are motivated to study auctions in which the utility of losers is not always

0, but rather depends on the identity of the winner, and the utility the winner derives

from the auction. This falls again into our consideration of the partially altruistic/spite

model, where a player does not only care about his own utility but also each other

player’s utility as well. We can capture this setting by instantiating our model in the

most general form with a spite/altruism matrix B = (βi,j), where each βi,j ∈ (−1, 1) for

i 6= j, and βi,i = 1 for each i. If bidder j wins the auction and obtains utility uj, then

bidder i’s utility from the auction is βi,j · uj . Thus, again if βi,j < 0, then player i is

spiteful toward player j (or a foe); if βi,j > 0, then player i is altruistic toward player j

(or a friend). Notice that we do not assume B to be symmetric.

Auctions with spite among players have been studied before [14, 15, 63, 69, 91].

However, in all past work, the assumption was that each off-diagonal entry of the spite
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matrix B was the same (and positive), i.e., all players have the same spite level toward

each other. We call this the case of uniform spite. While it is interesting as an analysis

of the effects of general distrust or future competition between bidders, we are also

further interested in taking into account the effects of spite/altruism in social or economic

networks on individual behaviors.

Here we study single-item auctions with friends and foes with non-unform spite/altruism.

We focus on auctions with Bayesian priors. For two subclasses of these auctions, we ex-

plicitly describe a Nash Equilibrium. These two subclasses are the following:

1. The valuations are drawn independently from [0, 1] according to an arbitrary (but

identical) distribution for all bidders, and the social network of bidders is regular.

This means that each bidder i has the same number d of non-zero βi,j for j 6= i

(and the same number n − d of zero βi,j for j 6= i), and all such non-zero entries

have the same value βi,j = β. Notice that we are already dealing with non-uniform

spite/altruism since each bidder i has non-zero βi,j and zero βi,j . In this case, we

analyze both first-and second-price auctions.

2. The spite/altruism matrix B is a non-negative triangular or block matrix (defined

in Section 7.2), but each bidder’s valuation of the item is drawn independently and

uniformly from the interval [0, 1], and the auction is first-price.

These characterizations partially generalize recent results of Morgan et al. and Brandt

et al. [69, 14], which characterized a Nash Equilibrium for the case of uniform spite. We

also point out here that the Equilibrium in the second case is not symmetric: different

bidders have different bidding strategies.
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Our explicit characterization also allows us to derive two interesting corollaries. For

the case of regular social networks, we show that if β < 0 (i.e., bidders only have foes and

neutral other bidders), the expected revenue of the second-price auction dominates the

first-price auction. Conversely, if β > 0 (i.e., bidders only have friends and neutral other

bidders), then the expected revenue of the first-price auction dominates the second-price

auction. For the case of some social networks under uniform valuation distributions, the

explicit characterization allows us to study the effect of changes in the social or economic

network on the bidding behavior. Perhaps somewhat surprisingly, an increase in spite

does not always lead to an increase in bids. Instead, we show that whether it leads to

an increase or decrease in bids depends on whether the recipient of spite is currently

overbidding or underbidding.

1.5 Future Directions

Our results on these problems suggest many interesting directions for further research,

either extensions or related questions. We will list questions specifically related to traffic

routing, congestion games, network vaccination, and auctions in the corresponding chap-

ters. Here, we discuss broader questions beyond our current model of altruism and spite.

We are interested in repeated games. In particular, with (non-uniform) altruism/spite

that can be known or unknown to players, how can equilibrium strategies be learned?

What would the PoA and PoS be for such equilibria? More broadly, there are other

notions of “other-regarding” (or “not entirely selfish”) behavior [34] such as fairness [33]

and reciprocity [42] in the literature of experimental/behavioral game theory [17]. We are
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also interested in studying some of these models and analyzing their impacts or effects.

Specifically, we discuss a model of fairness by Fehr and Schmidt defined for inequity

averse and reciprocal players whose impact on cooperation in prisoners’ dilemma games

is shown [34].

1.5.1 Learning in Repeated Games

In repeated games, an intriguing general question is whether a similar model with not

entirely selfish players is helpful for learning equilibrium strategies if there is already some

learning algorithm for selfish players, or whether agents can learn equilibrium strategies

using a natural learning algorithm.

For example, in routing there are already results using arbitrary no-regret algorithms

for the standard selfish model [10], where the per-time-step regret of a user is the differ-

ence between her average latency and the latency of the best fixed path in hindsight, and

an algorithm is no-regret if, for any sequence of flows, the expected regret over internal

randomness in the algorithm goes to 0 as the number of time steps, T , goes to infinity.

In particular, if each user runs a no-regret algorithm, the average regret over all users

also approaches 0. Therefore, it can be assumed that a function R(T ), which is an upper

bound on the average regret, goes to 0 as T goes to infinity; Tǫ is then defined as the

number of time steps required to get R(T ) = ǫ. However, it is possible for a flow f

to have regret near 0 and yet still be far from a true Nash flow. We can only expect

that most users take a nearly-cheapest path given a flow f . Define a flow f to be at

ǫ-Nash equilibrium if the average cost under this flow is within ǫ of the minimum cost

path under this flow; among other results, it is shown that for no-regret algorithms the

18



www.manaraa.com

time-average flow f̂ is approaching equilibrium [10], i.e., bounds on the number of time

steps before f̂ is ǫ-Nash are obtained for a given Tǫ.

We are interested in how (non-uniform) altruism/spite will have effects on the prob-

lem, especially on whether players’ plays converge to any equilibria, the time of conver-

gence, the PoA/PoS, etc. Similar questions can be asked for atomic congestion games

and other games. The results for uniform altruism/spite may be established by sim-

ply extending those for entirely selfish users. However, such extending may not work

for non-uniform altruism/spite, since users with different altruism levels would perceive

the same network configuration differently, which is similar to the situation at one-shot

games with non-uniform altrusm/spite. Existence of equilibria and the PoA/PoS are not

obvious.

Another type of questions that one can ask emerges from the setting where each

player does not know the (non-uniform) altruism/spite levels. We would be interested

in finding simple strategies wherein each player adapts his strategy based on the utility

or cost derived from earlier runs of games. It is not clear if no-regret algorithms would

work here since the (non-uniform) altruism/spite levels are unknown. For example, can

we learn bidding strategies when (non-uniform) altruism/spite levels are unknown?

1.5.2 Other-Regarding Payoffs

Broadly, we would like to explore beyond our current model of altruism and spite, under

which we try to capture the connection between the “not entirely selfish” behavior and

the social welfare. In the behavioral game theory literature, there are many different
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models of other-regarding payoff functions focusing on different notions of not entirely

selfish behavior.

As an example of one of the future directions along this line, in Section 8.2.2 we

are going to discuss another model that has been defined for inequity averse and recip-

rocal players, and shown its impact on cooperation through prisoners’ dilemma games

[34]. This may further motivate us to formally analyze the effects of inequity averse

and reciprocal behavior on certain global measures capturing overall cooperation in the

society.
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Chapter 2

Preliminaries

We are giving basic definitions and models that we are using throughout this thesis,

accompanied by some initial results of interesting examples.

We may need some desirable properties of functions later in this thesis: convexity

or semi-convexity. A continuous and differentiable function f : R → R is convex if its

second derivative is non-negative, i.e., f ′′(x) ≥ 0; a discrete function f : N → R is convex

if f(x+ 1) − f(x) ≥ f(x)− f(x− 1). A (continuous or discrete) function f : R → R is

semi-convex if x · f(x) is convex. We use v to denote a vector (v1, ..., vi, ..., vk). So, 0 is

the all-ones vector and 1 is the all-ones vector.

2.1 Games and Equilibrium Concepts

The most essential thing that needs to be defined is what we mean by a game.

Definition 2.1.1 (Game) A game consists of a (finite or infinite) set of players, each

of which is assigned a finite set of strategies Si and a payoff function pi : S1×...×Sn → R
+

that player i wants to optimize.

21



www.manaraa.com

A strategy profile s = (s1, ..., sn) ∈ S1 × ...× Sn is any combination of strategies for the

players, chosen from the Cartesian product of finite sets of strategies S1 × ...× Sn.

At pure Nash equilibrium, no player can improve his payoff by unilaterally changing

his strategy.

Definition 2.1.2 (Pure Nash Equilibrium) A strategy profile s = (s1, ..., sn) is a

pure Nash equilibrium if for all players i, pi(s1, ..., si, ..., sn) ≥ pi(s1, ..., s
′
i, ..., sn) for all

s′i ∈ Si.

We say that a strategy profile s is an ǫ-Nash equilibrium if no player can improve his

payoff by more than ǫ by unilaterally changing his strategy.

Definition 2.1.3 (ǫ-Nash Equilibrium) For ǫ > 0, a strategy profile s = (s1, ..., sn)

is an ǫ-Nash equilibrium if for all players i, pi(s1, ..., si, ..., sn) ≥ pi(s1, ..., s
′
i, ..., sn) − ǫ

for all s′i ∈ Si.

We will use more general equilibrium concepts beyond Nash equilibrium in Chapter 5.

Therefore, we introduce them here as well.

In a mixed Nash equilibrium, a player’s strategy can be any probability distribution

over available strategies, and no individual player can improve his expected payoff by

choosing another probability distribution.

Definition 2.1.4 (Mixed Nash Equilibrium) A vector (σ1, ..., σn) of independent

probability distributions over strategy sets is a mixed-strategy Nash equilibrium if no

player can improve his payoff under the product distribution σ = σ1 × ... × σn via a

unilateral deviation: Es∼σ[pi(s)] ≥ Es−i∼σ−i
[pi(s

′
i, s−i)] for all i and s′i ∈ Si, where σ−i

is the product distribution of all σj’s other than σi.
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A correlated equilibrium is more general than a mixed Nash equilibrium. The idea

can be interpreted as a trusted mediator who draws a strategy profile s from this dis-

tribution σ and “recommends” si privately to each player i. Assuming that the other

players conform to the mediator’s recommendation, if no player would want to deviate

from the recommended strategy in expectation, the distribution is called a correlated

equilibrium. Mixed-strategy Nash equilibria are the correlated equilibria that are also

product distributions.

Definition 2.1.5 (Correlated Equilibrium) A correlated equilibrium is a joint prob-

ability distribution σ = (σ1, ..., σn) over the strategy profiles with the property that

Es∼σ[pi(s)|si] ≥ Es∼σ[pi(s
′
i, s−i)|si] for all i and si, s′i ∈ Si, i.e.,

∑

s−i∈S−i
σspi(si, s−i) ≥

∑

s−i∈S−i
σspi(s

′
i, s−i), where σs is the probability that the strategy profile is s.

A coarse correlated equilibrium is more general than a correlated equilibrium. A

correlated equilibrium protects against deviations by players knowing their recommended

strategy, while a coarse correlated equilibrium is characterized by a weaker property that

each player does not want to deviate without seeing his recommendation.

Definition 2.1.6 (Coarse Correlated Equilibrium) A coarse correlated equilibrium

or coarse equilibrium is a joint probability distribution σ over strategy profiles that satisfy

Es∼σ[pi(s)] ≥ Es∼σ[pi(s
′
i, s−i)] for every i and si, s

′
i ∈ Si.

Alternatively, coarse correlated equilibria can be defined as all the probability distribu-

tions which are the limit of the empirical distribution of some no-regret sequence, which

will be formally described in Section 8.2.1.
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Pure Nash equilibria in which all players play pure strategies (no randomization or

mixed strategies) may not always exist while there always exist mixed Nash equilibria for

any n-player game due to Nash’s Theorem [72]. Note that payoffs can be either utilities

to be maximized or costs to be minimized in an optimization sense.

2.2 Social Welfare, Price of Anarchy (PoA), and Price of

Stability (PoS)

Given a game, it is natural to consider the social welfare as the global measure, intuitively,

which reflects how well everyone as a whole does. There are many possible social welfare

functions. We are mostly interested in the utilitarian function, i.e., the sum of all players’

utilities.

The social optimum maximizes the social welfare over all possible strategy profiles.

Usually, the social optimum is not reached with selfish players, because each of the

players is only interested in his own utility.

The Price of Anarchy (PoA) is a measure of how well society does when they play by

optimizing their own utility functions (reaching equilibrium, for instance, a pure Nash

equilibrium) as opposed to choosing the social optimum.

Definition 2.2.1 (Price of Anarchy [55]) The Price of Anarchy or pure Price of An-

archy is defined as the ratio of the social optimum welfare to the welfare of the worst

pure Nash equilibrium, i.e.,

sup
s∈E(I)

∑n
i=1 pi(s)

∑n
i=1 pi(s

∗)
,
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where E(I) is the set of all pure Nash equilibria and s∗ is the social optimum given a

game instance I.

In other words, it is the ratio of the largest social welfare achievable to the least social

welfare achieved at any Nash equilibrium. It captures how much the overall performance

of any outcome of selfish choices gets downgraded compared to the optimum.

There can be a series of notions of generalized Price of Anarchy besides the pure

Price of Anarchy corresponding to different general equilibrium concepts.

Definition 2.2.2 (Mixed Price of Anarchy) The Price of Anarchy of mixed Nash

equilibria or mixed Price of Anarchy is defined as the ratio of the social optimum welfare

to the expected welfare of the worst mixed Nash equilibrium, i.e.,

sup
σ∈E(I)

Es∼σ[
∑n

i=1 pi(s)]
∑n

i=1 pi(s
∗)

,

where E(I) is the set of all mixed Nash equilibria and s∗ is the social optimum given a

game instance I.

Definition 2.2.3 (Correlated Price of Anarchy) The Price of Anarchy of corre-

lated equilibria or correlated Price of Anarchy is defined as the ratio of the social opti-

mum welfare to the expected welfare of the worst correlated equilibrium, i.e.,

sup
σ∈E(I)

Es∼σ[
∑n

i=1 pi(s)]
∑n

i=1 pi(s
∗)

,

where E(I) is the set of all correlated equilibria and s∗ is the social optimum given a

game instance I.
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Definition 2.2.4 (Coarse Price of Anarchy) The coarse Price of Anarchy or Price

of Total Anarchy 1 is defined as the ratio of the social optimum welfare to the expected

welfare of the worst coarse correlated Nash equilibrium, i.e.,

sup
σ∈E(I)

Es∼σ[
∑n

i=1 pi(s)]
∑n

i=1 pi(s
∗)

,

where E(I) is the set of all coarse correlated equilibria and s∗ is the social optimum given

a game instance I.

Similarly, if we consider the best equilibrium instead of the worst equilibrium, then

for pure Nash equilibria we have the following definition.

Definition 2.2.5 (Price of Stability [2]) The Price of Stability is defined as the ratio

of the social optimum welfare to the welfare of the best pure Nash equilibrium, i.e.,

inf
s∈E(I)

Es∼σ[
∑n

i=1 pi(s)]
∑n

i=1 pi(s
∗)

,

where E(I) is the set of all pure Nash equilibria and s∗ is the social optimum given a

game instance I.

In other words, it is the ratio of the largest social welfare achievable to the largest social

welfare achieved at any (pure) Nash equilibrium. It captures how bad the world will

have to be if we want that no player wants to deviate. Such an outcome can be thought

as a stable state stablizing through steps of deviations from some instable system state,

and thereby “stability” is used to name this measure.

1Blum et al. [11] define the price of total anarchy as the worst-case ratio of the social optimum to
the expected average welfare of a “no-regret sequence”, which we will discuss more in Chapter 8.
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Also, there can be a series of different notions of Price of Stability besides the Price of

Stability for pure Nash equilibria corresponding to different general equilibrium concepts.

However, we do not analyze them here so we are going to skip these definitions.

2.3 Model of Partial Altruism and Spite

To achieve our goal in this thesis, we need to model altruism and spite by designing a more

general model of utility that subsumes the model with only “self-regarding” payoffs as a

special case. There are more complicated models in the literature on “other-regarding”

payoffs, discussed more in the beginning of the next chapter.

We base our treatment on a simple and elegant suggestion of Ledyard [57]: In a game

with n players, the utility of a player i given a strategy profile s is pi(s) + βi
1
n

∑

j pj(s),

where the pi are the individuals’ payoff functions. The parameter βi captures how

important the average social welfare is to player i.

We modify and generalize this approach slightly, and assume that the perceived payoff

of each player is a linear combination of his own a priori payoff and the payoffs of other

players. Players’ perceived payoff functions are based on a coefficient matrix B = (βi,j)

representing the concept of interaction relationships (i.e., altruism/spite), where βi,j for

j 6= i is the value that player i has toward player j, and βi,i is the value that player i has

toward himself. In a general form, player i’s perceived payoff function is the combination

∑

j

βi,jpj(s),
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where the range of each βi,j depends on how we set it to be in different problems, and the

interpretation of every βi,j can also vary and depend on problems. In different contexts,

we can instantiate B with different parameter settings to provide a suitable model for

different problems.

For instance, in Chapter 4 on traffic routing and 5 on atomic congestion games with

altruism and spite, where users do not differentiate the other users individually (βi,j is

the same for all j 6= i), by setting βi,i = 1 − βi + βi = 1 and βi,j = βi for all j 6= i,

player i’s perceived payoff function is

(1− βi)pi(s) + βi
∑

j

pj(s),

where βi is the user’s altruism level, representing how much he cares about the social

welfare.

In Chapter 4 where βi ∈ [−1, 1], we adjust this definition a bit to look at the change

“rate” of the social welfare in order to make it a meaningful model, since we are dealing

with non-atomic users. This then has the advantage of making all utilities comparable

on the same scale, and allowing us to model entirely altruistic behavior by setting βi = 1.

The restriction to values βi ≥ −1 is justified in Section 4.2. We call pi(s) the selfish part

of player i’s utility, and
∑

j pj(s) the altruistic part. If βi < 0, then player i derives

utility from a decrease in social utility; we call such players spiteful. In Chapter 5, we

only consider altruistic players where βi ∈ [0, 1], since the techniques used there may not

directly extend for spiteful players.

28



www.manaraa.com

In Chapter 6 on network vaccination games with uniform altruism, every player not

only does not differentiate the other players individually (βi,j is the same for all j 6= i)

but also has the same altruism level by setting βi = β for all i.

In Chapter 7 on auctions with spite and altruism, we keep the most general model

by setting βi,i = βi,i and βi,j = βi,j , the perceived utility of bidder i becomes

∑

j

βi,jpj(s),

where βi,j ∈ [−1, 1] and βi,j for j 6= i is an off-diagonal element in the spite/altruism

matrix B = (βi,j). If βi,j < 0 for j 6= i, then player i loses utility from player j’s winning;

we call such a player i spiteful to player j. If βi,j > 0 for j 6= i, then player i derives

utility from another player j’s winning; we call such a player i altruistic to player j. Note

that if every bidder does not differentiate the other bidders, then the model degenerates

back to the one with βi,j = βi for all j 6= i.

We may need to use some other settings for B when facing other problems in the

future. This general framework allows us to do that with ease.

2.3.1 Recursive Altruism

Why do we not use a model where a player recursively considers the utility that a player

derives from another player’s perceived utility function? It should be generally interesting

to consider such a model. Such systems of interdependent utility functions have been

studied by Bergstrom [9]. He considered the question of when a system of interdependent
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utility functions induces unique utility functions over allocations by means of the theory

of dominant-diagonal matrices.

We restate his main proposition in our context here, where the system of utility

functions is linearly interdependent. Note that he proved a more general proposition

([9], Proposition 3).

Proposition 2.3.1 Consider a system of interdependent utility functions described by

the equations Ui = αi,iui +
∑

j 6=i αi,jUj for all individuals i, where ui is the a priori

payoff function of individual i, Uj is the (recursive) utility function of individual j, and

αi,j is a constant coefficient. Let A = (αi,j) be the altruism/spite matrix consisting of

αi,j representing altruism level from i to j. If I−A is dominant diagonal, then there are

coefficients βi,j such that the interdependent utilities can be written equivalently as just

linear combinations of a priori payoff functions.

Therefore, using his results, we can directly define our perceived utilities or costs on a

priori payoff functions, without bothering starting indirectly from the recursive defini-

tions.

He also identified the class of transformations on interdependent utility functions

that are equivalent in the sense of inducing the same preferences over allocations ([9],

Proposition 4).

2.3.2 Tolls, Taxes, and Socialization of Costs

By interpreting the altruistic term in our model as a monetary cost (instead of perceived

cost due to altruism), we can also consider our model as one of socialized costs for a

cost minimization problem. Player i has to pay a βi fraction of the cost incurred by

30



www.manaraa.com

other nodes. For example, it can be in the form of health care premiums in a network

vaccination game; this payment should provide additional incentives for node players

in a network to be vaccinated, as spreading a disease to others will eventually lead to

higher costs for them as well. In a routing or congestion game, the altruistic term can

be interpreted as a toll or tax; see Section 4.1.2 for more discussion.

2.3.3 Counter-Intuitive Examples

With our model of altruism and spite defined, our first step is to test the intuition that al-

truism always helps in terms of the social welfare. Here we present two counter-intuitive

examples of two-player games: There exists a game instance in which introducing al-

truism strictly decreases the social welfare for both the worst pure and worst mixed

Nash equilibria; there also exists a game instance in which introducing altruism strictly

decreases the social welfare for both the best pure and best mixed Nash equilibria.

Worst Pure/Mixed Nash Equilibrium.

Consider the Game 1 in Table 2.1. Player 1 playing strategy 1 and player 2 playing

strategy 1 is the only pure and mixed Nash equilibrium, the social welfare of which is

1+ 5 = 6. After defining the perceived payoff of a β-altruistic player to be (1− β) times

the original payoff plus β times the social welfare (i.e., the convex combination of the

original payoff and the social welfare), the payoff matrix with β = 0.8 becomes the one

in Table 2.2. Then, there are two pure Nash equilibria: player 1 playing strategy 1 and

player 2 playing strategy 1 (whose social welfare is 6) and Player 1 playing strategy 2

and player 2 playing strategy 2 (whose social welfare is 2 + 2 = 4, which is now the
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Table 2.1: Payoff matrix for game 1 without altruism.

Player 2’s strategy 1 Player 2’s strategy 2

Player 1’s strategy 1 (1,5) (0,0)

Player 1’s strategy 2 (0.5,3) (2,2)

Table 2.2: Perceived payoff matrix for game 1 with uniform altruism β = 0.8.

Player 2’s strategy 1 Player 2’s strategy 2

Player 1’s strategy 1 (5,5.8) (0,0)

Player 1’s strategy 2 (2.9,3.4) (3.6,3.6)

worst pure Nash equilibrium since 6 > 4). So, the social welfare of the worst pure Nash

equilibrium gets worse with altruism in Game 1.

For mixed Nash equilibria, besides these two equilibria with β = 0.8 there is one more:

Player 1 plays strategy 1 with probability 0.03 and strategy 2 with probability 0.97 while

player 2 plays strategy 1 with probability 0.6 and strategy 2 with probability 0.4, which

results in an expected social welfare of 0.03·0.6·6+0.03·0.4·0+0.97·0.6·3.5+0.97·0.4·4 =

3.697. Thus, the expected social welfare drops from 6 (player 1 playing strategy 1 and

player 2 playing strategy 1 is the only mixed Nash equilibrium without altruism) to

min{6, 4, 3.697} = 3.697 for the worst mixed Nash equilibrium.

Best Pure/Mixed Nash Equilibrium.

Now we consider the Game 2 in Table 2.3 for the best pure/mixed Nash equilibrium.

Player 1 playing strategy 1 and player 2 playing strategy 1 is the only pure Nash equilib-

rium, the social welfare of which is 3+1.2 = 4.2. This is the best pure Nash equilibrium.

With β = 0.5, the perceived payoff matrix becomes the one in Table 2.4. Then, there

32



www.manaraa.com

Table 2.3: Payoff matrix for game 2 without altruism.

Player 2’s strategy 1 Player 2’s strategy 2

Player 1’s strategy 1 (3,1.2) (0,0)

Player 1’s strategy 2 (0,0) (2.5,0.8)

Player 1’s strategy 3 (2.9,1.5) (2,2)

Table 2.4: Perceived payoff matrix for game 2 with uniform altruism β = 0.5.

Player 2’s strategy 1 Player 2’s strategy 2

Player 1’s strategy 1 (3.6,2.7) (0,0)

Player 1’s strategy 2 (0,0) (2.9,2.05)

Player 1’s strategy 3 (3.65,2.95) (3,3)

is only one pure and mixed Nash equilibrium: player 1 plays strategy 3 and player 2

plays strategy 2, which has a social welfare of 2 + 2 = 4. This is the best pure Nash

equilibrium with β = 0.5. So, the social welfare of the best pure Nash equilibrium does

get worse with altruism in Game 2.

For mixed Nash equilibria, without altruism, besides the only pure Nash equilibrium

where player 1 plays strategy 1 and player 2 plays strategy 1, there is also another mixed

Nash equilibrium: player 1 plays strategy 1 with probability 0.3 and strategy 3 with

probability 0.7 while player 2 plays strategy 1 with probability 0.05 and strategy 2 with

probability 0.95, which results in an expected social welfare of 0.3 · 0.05 · 4.2 + 0.3 · 0.95 ·

0 + 0.7 · 0.05 · 4.4 + 0.7 · 0.95 · 4 = 2.877. So, the best mixed Nash equilibrium has an

expected social welfare of max{2.877, 4.2} = 4.2. Thus, the expected social welfare still

drops from 4.2 to 4 (player 1 playing strategy 3 and player 2 playing strategy 2 which is

the only mixed Nash equilibrium with β = 0.5) for the best mixed Nash equilibrium.

33



www.manaraa.com

We have seen that at least for some game instances, altruism does strictly worsen

the (expected) social welfare for both pure and mixed Nash equilibria. We are therefore

more interested in how the PoA/PoS for a class of games (i.e., the worst-case PoA/PoS

value in a class of games) changes with altruism/spite. We will see two opposite trends

in different classes of games in the following chapters.
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Chapter 3

Related Work

We divide the related work into sections on different topics.

3.1 Models with Other-Regarding Payoff Functions

Questions about the accuracy of the assumption that users are selfish and rational have

been as old as the field of game theory (see, e.g., [57]). Different models have been

proposed to model user preferences more accurately.

Ledyard proposed a simple model of altruism [57] as an explanation for the results

of public good contribution games, where a player’s utility is a linear function of both

the player’s own monetary payoff and the other players’ payoffs. However, this simple

model is inadequate to explain some games still, such as ultimatum bargaining. Levine

brought up a revised model to remedy this using relative spite and altruism [58], where

the adjusted utility of a player reflects the player’s own utility and his regard for other

players. There are two coefficients: the coefficient of altruism tells spiteful players from

altruistic players, and the other coefficient reflects the fact that players may have a

higher regard for other altruistic players than spiteful ones. The model can be regarded
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as incorporating fairness, not in the sense that players have a particular target to be

considered fair by them, but in the sense they are willing to be more altruistic to another

player who is more altruistic towards them.

Fehr and Schmidt considered a model with an innate sense of fairness [33], where

besides purely selfish players, there are players who dislike inequitable outcomes. First,

they experience inequity if they are worse off in their material terms than the other

players, and they also feel inequity if they are better off. Second, nevertheless, it is

assumed that players suffer more from inequity that is to their material disadvantage

than from inequity that is to their material advantage.

Geanakoplos et al. [41] use the approach of psychological game to model that players

care not just about other players’ utility, but also their attitudes towards other players

depending on how they are treated. However, these models are complicated, and depart

radically from decision theory.

There is work aiming at untangling the concepts of altruism, fairness, and reciprocity.

Cox [28] designed experiments to identify the actions resulting from trust or reciprocity

away from the actions resulting from altruistic or inequity-averse other-regarding pref-

erences that are unconditional on the others’ behavior. This is important in obtaining

empirical data and information that can help constructing models that can increase the

empirical validity of game theory. Charness and Rabin [18] designed a range of sim-

ple experiments to show that players are more concerned with increasing social welfare

(sacrificing to increase all players’ payoffs, especially for low-payoff players) than with

reducing differences in payoffs as proposed in inequity-averse models, while they are also

driven by reciprocity.
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A model somewhat similar to ours was recently studied in the context of contributions

to P2P systems by Feldman et al. [35], who posited an intrinsic generosity parameter

of users, their willingness to contribute to the system. They then study contribution

dynamics and their equilibria, akin to many collective behavior scenarios studied by

Schelling [87].

While standard game theory addresses the way completely rational players operate,

the field of behavioral game theory [17] uses psychological principles and numerous exper-

iments involving human subjects to develop models and theories of reciprocity, limited

strategizing, learning, etc. in order to come closer to the real-world human strategic

behavior.

3.2 Externalities

The notion of spite and altruism as defined here broadly falls into the class of allocation

externalities in auctions: the utility of a bidder depends not exclusively on her own

allocation, but also on the allocations of other bidders. There is a large amount of

literature on various types of allocation externalities (see, e.g., [49, 50, 51, 16]).

In particular, Jehiel et al. [50] construct revenue-maximizing auctions for the case

where each potential buyer has a given constant externality depending on the identity

of the winner. Thus, the difference to our model is that in the model of [50], a loser’s

utility does not depend on the price at which the winner obtained the object, only the

winner’s identity.
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3.3 Selfish Routing

The study of the ineffectiveness of Selfish Routing was pioneered within the theory com-

munity by the groundbreaking work of Roughgarden and Tardos [86]. It was preceded by

work in the economics and traffic engineering communities on congestion models, traffic

routing, and the impact of tolls [75, 94, 8]. Since the original paper by Roughgarden and

Tardos, a lot of progress has been made on different aspects of the problem, including

different objectives [79], Stackelberg strategies in which an altruistic central authority

controls a fraction of all traffic [54, 80, 90], the impact of tolls or taxes on the inefficiency

[25, 26, 36, 37, 53], atomic games wherein users control non-infinitesimal amounts of

traffic [27, 45, 82], and the effects of network structure on the inefficiency [60, 78, 83].

For an excellent overview of many of these results, see the book by Roughgarden [81].

Tradeoffs between individual optimization and social optimum in the context of traffic

routing are also considered by Jahn et al. [48]. They posit that users will be willing to

incur latency somewhat exceeding a “lowest possible” baseline if advised by a traffic

routing system. They experimentally evaluate how centralized routing of users under

this restriction compares with unrestricted centralized routing (which may place very

heavy burdens on some users).

3.4 Stackelberg Routing

Among other things, our results draw a connection between Stackelberg strategies and

tolls on users, in that the altruistic component of a user’s utility can be considered as a

(traffic-dependent) toll, and entirely altruistic users act as though they submitted to the
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control of a benevolent authority. Such Stackelberg routing strategies have been studied

extensively. In general, the price of anarchy can still be unbounded, even for single-

commodity flows where a central authority controls a large constant fraction of the traffic

[12]. For linear latency functions, Karakostas and Kolliopoulos [54] recently showed an

upper bound of (4 −X)/3 on the Price of Anarchy (where X = (1−
√
1−λ)(3

√
1−λ+1)

2
√
1−λ+1

) for

arbitrary networks and commodities in which a central authority controls a λ fraction

of traffic. For arbitrary latency functions in series-parallel networks, Swamy [90] bounds

the price of anarchy by 1 + 1/λ. For parallel link networks with latency functions from

a class C with an upper bound ρ(C) on the price of anarchy in Pigou examples, he shows

an upper bound of λ+ (1− λ)ρ(C).

In the context of Stackelberg routing, a converse direction has been studied by Sharma

and Williamson [88] and Kaporis and Spirakis [52]. They ask how much traffic needs

to be controlled by a central authority to guarantee any improvement in average la-

tency [88] (called Stackelberg threshold) or to guarantee optimality of the resulting Nash

Equilibrium [52] (called Price of Optimum).

3.5 General Equilibrium Concepts for Congestion Games

The notion of smoothness was proposed by Roughgarden [84]. The basic idea is to bound

the sum of cost increases of individual players switching strategies by a combination

of the costs of two states. Because these types of bounds capture local improvement

dynamics, they bound the PoA not only for Nash equilibria, but also more general classes,

including coarse correlated equilibria. The smoothness notion was recently refined in the
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local smoothness framework by Roughgarden and Schoppmann [85]. They require the

types of bounds described above only for nearby states, thus obtaining tighter bounds,

albeit only for more restrictive solution concepts and convex strategy sets. Using the

local smoothness framework, they obtained optimal upper bounds for atomic splittable

congestion games. Nadav and Roughgarden [71] showed that smoothness bounds apply

all the way to a solution concept called average coarse correlated equilibrium, but not

beyond.

A comparison between the costs in worst-case outcomes under solution concepts of

different generality was recently undertaken by Bradonjic et al. [13] under the name

“price of mediation”: specifically for the case of symmetric singleton congestion games

with convex latency functions, they showed that the ratio between the most expensive

correlated equilibrium and the most expensive Nash equilibrium can grow exponentially

in the number of players.

3.6 Player-Specific Congestion Games

Hoefer and Skopalik established the existence of pure Nash equilibria for several sub-

classes of atomic congestion games with non-uniform altruism [46]; for the generalization

of arbitrary player-specific cost functions, Milchtaich [67] showed existence for singleton

congestion games, and Ackermann et al. [1] for matroid congestion games, in which the

strategy space of each player is the basis of a matroid on the set of resources.
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3.7 Network Vaccination

A number of recent studies have analyzed the spread of worms or viruses on Internet-like

topologies by focusing on characterizing the epidemic threshold (the transmission rate at

which the disease goes from dying out quickly to infecting a large share of the network)

for models such as small-world graphs [95] and preferential attachment models [7, 56].

The epidemic threshold is related to graph properties such as degree distribution, spectral

radius and isoperimetric constants [24]. Based on these observations, Dezső and Barabási

[31] suggest the vaccination of high-degree nodes in power-law random graphs as a way

of increasing the epidemic threshold and thereby reducing the spread of diseases. Similar

heuristics with analysis under random graph models with given degree distributions are

also presented in [47].

In the context of network inoculation, the model of Aspnes et al. [4] has been extended

in several ways. Meier et al. [66] consider the addition of friendship and show that

friendship with neighbors can sometimes lead to significantly more efficient network

inoculations. Moscibroda et al. [70] instead consider malicious Byzantine players who

may misrepresent their actions with an intent to harm other players. (Naturally, this

model is more suited to computer networks than social networks.) Perhaps surprisingly,

such malice can sometimes lead to societally more desirable outcomes, due to the fear of

other players. Recently, Diaz et al. [32] showed that the same “windfall of malice” can

be achieved with a mediator. A mediator is a trusted third party that suggests actions

to each player; the players retain free will and can ignore the mediator’s suggestions.

The concept of a mediator is closely related to that of a correlated equilibrium [5]. If
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a mediator recommends actions to the players so that it is in the best choice of each

player to follow the mediator’s recommendation, then the mediator is implementing a

correlated equilibrium (defined in Section 2.1).

3.8 Auctions

The notion of individual spiteful behavior and models similar to the one we are proposing

have recently been studied in the context of auctions. For single-item auctions, Brandt

and Weiss [15] study the behavior of “antisocial” agents, whose utility decreases in their

competitors’ profit. They analyze full-information equilibria between two players, both

of whom have spite level β = −1
2 .

Morgan et al. [69] and Brandt et al. [14] focus on Bayesian Nash Equilibria of first-

price and second-price auctions with uniform spite. The results in these two papers are

very similar to each other, and differ mostly in the precise model of the utility of the

winner, as discussed briefly in Section 7.1. Brandt et al. [14] study the Bayesian set-

ting, and derive symmetric Bayesian-Nash equilibria for spiteful agents in first-price and

second-price sealed bid auctions. They show that the expected revenue in secondnd-price

auctions is higher than the expected revenue in first-price auctions when all agents are

neither completely selfish nor completely spiteful. They also prove that in the presence

of spite, complete information reduces the revenue in second-price auctions, while it

increases the revenue in first-price auctions.

42



www.manaraa.com

Vetsikas and Jennings [91] generalize some of these results for multi-unit auctions,

still assuming uniform spite among the players, and deriving symmetric Bayes-Nash

equilibria for spiteful agents in both mth and (m+ 1)th price sealed bid auctions.

Similarly, Liang and Qi [59] study the effects of cooperative or vindictive bidding

strategies on the revenue of sponsored search auctions and the existence of truthful

strategies and equilibria.

A similar model is also studied in a recent paper by Deng and Qi [30] on auction

design for pricing priority rights. Losers in this model also incur a negative utility, albeit

one that depends on their own utility for the item, rather than the winner’s. The goal

in [30] is to design a truthful, egalitarian and budget-balanced auction.

3.9 Altruism and Spite in Game-Theoretic Settings

Several recent papers have analyzed the impact of spiteful or altruistic behavior in several

game-theoretic settings with different models. Babaioff et al. [6] studied the impact of

spiteful behavior on the outcome of routing games. In their model, there are two types

of players: selfish rational players, and malicious players, who seek to maximize the

average delay experienced by the rational players (while not caring about their own

delay). They quantify the impact of malicious players on the equilibrium, and show that

the price of anarchy can sometimes be increased, and in fact decreased at other times,

which is similar to the “windfall of malice” shown in network vaccination [70].

Roth [77] considered the effect of malicious or Byzantine players on the PoA when

each player has no regret in linear congestion games. Since his assumptions are strictly
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weaker than in previous work, the bounds proved on two measures of the price of malice

hold also for the quantities studied by Babaioff et al. [6] and Moscibroda et al. [70].

Finally, mechanism design for spiteful players in scheduling is considered by Garg et

al. [40]. They developed a strategy used by a spiteful agent to create losses to the other

players, and analyze the effect of different levels of agents’ spite on the losses caused to

the other agents.

3.10 Game Theory and Economic/Social Networks

The impact of social network structure on games has recently been studied by Ashlagi et

al. [3], under the name social context games. They posit that the utility of an agent can

be computed from the subutility functions in her neighborhood, according to various

competitive or collaborative aggregation functions. The specific games studied in [3]

differ from all games that we considered here, and mostly belong to the class of resource

selection games.
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Chapter 4

Traffic Routing

Traffic routing is a prevalent problem in real-world transportation and computer net-

works. Traffic routing games or network congestion games are a special case of (general)

congestion games, the atomic version of which will be discussed in the next chapter. The

results in this chapter can be compared with those in the next chapter. From a technical

point of view, it makes sense to study the non-atomic case before the atomic case since

the former can be conceptually thought of as a case of the latter when the number of

players goes to infinity. The results of this chapter are based on the paper [21].

4.1 Preliminaries

We start with the definition of a general congestion game. In a general congestion game,

each player’s strategy consists of a set of resources that he uses, and the cost of the

strategy depends simply on the number of players using each resource. Formally, in

a general congestion game G = (N,E, {ce}e∈E, {Si}i∈N ), we are given a set of players

N = {1, . . . , n}, a set of resources E with cost functions ce : R → R for every resource

e ∈ E, and a strategy set Si ⊆ 2E for every player i ∈ N . When Si is the same for
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every player i, the game is symmetric; when |Si| = 1 for all i, the game is singleton.

For a joint strategy s ∈ S = S1 × ... × Sn, define fe(s) = |{i : e ∈ si}| as the number

of players using resource e ∈ E. The social cost function is C(s) =
∑n

i=1 ci(s), where

ci(s) =
∑

e∈si ce(fe(s)) is the cost of player i ∈ N .

A (traffic) routing game or network congestion game is a special case of a general

congestion game, where we are given a (directed) graph G = (V,E). The set of resources

is the set of edges E, and a strategy set consists of only paths between a source-sink

pair. Each edge is equipped with a flow-dependent latency function ce(x). The meaning

is that if the total flow on the edge e is x, then each user experiences a delay ce(x) on

that edge. Thus, we can think of the total traffic as a multi-commodity flow with rates

ri of users between source-sink pairs (si, ti), where the total flow from si to ti is ri. If

fe denotes the total flow on edge e, then the total latency experienced by a user on

a path P is cP (f) :=
∑

e∈P ce(fe). The total latency experienced by all users is thus

C(f) :=
∑

e fe ·ce(fe). An instance of the routing problem is thus a triple (G, r, c) (where

r and c are the vectors of flow rates and edge cost functions). A symmetric singleton

routing game or network congestion game therefore has a graph of single-commodity

parallel links.

In this chapter, our model is based on the model of Wardrop [94], as described by

Roughgarden and Tardos [81, 86], where users that are routed through G are non-atomic,

i.e., infinitesimally small. We assume that each ce is a continuously differentiable and

monotone nondecreasing function. In addition, for some of our results, we will assume

that each ce is convex, and for others that each ce is semi-convex, i.e., that x · ce(x) is
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convex. The socially optimum solution for (G, r, c) is the flow f minimizing C(f), and

thus the solution to the convex program

Minimize
∑

e fe · ce(fe)

subject to f is a feasible multi-commodity flow for (G, r, c).

The constraints are the standard linear multi-commodity flow constraints; the objective

function is convex so long as each ce is semi-convex. Thus, the optimum can be computed

in polynomial time using convex programming [73].

Selfish users do not care about the cost C(f). Their sole goal is to select a path

P minimizing their own latency cP (f). As the goals of different selfish users in mini-

mizing their latency are conflicting with each other, the traffic routing problem can be

considered a game, and the “outcome” of this game will be a (pure) Nash Equilibrium

(Definition 2.1.2): a multi-commodity flow f such that, given f , no user has an incentive

to choose a different path. Thus, a flow f is at Nash Equilibrium if and only if for each

commodity i, all si-ti paths P with fP > 0 have the same latency cP (f), and all other

si-ti paths have at least the same latency. Nash Equilibria, too, can be computed as

solutions to a convex program:

Proposition 4.1.1 ([81], Proposition 2.6.1) The Nash flows of an instance (G, r, c)

are exactly the solutions to the following convex program, and can thus be computed in

polynomial time.

Minimize
∑

e

∫ fe
0 ce(t)dt

subject to f is a feasible multi-commodity flow for (G, r, c).

47



www.manaraa.com

If f is a flow at Nash Equilibrium, and f∗ the socially optimum flow, then the ratio

ρ(G, r, c) := C(f)/C(f∗) is the Price of Anarchy of the instance (G, r, c), capturing how

much larger C(f) can be than C(f∗) (Definition 2.2.1). Roughgarden and Tardos [86]

gave a generalization of Pigou’s example [75] (see our different generalization of Pigou’s

example in Definition 4.2.2 for uniform altruism), showing that if the cost functions can

be arbitrary, then the PoA is unbounded, even for networks consisting of two nodes

and two parallel links. On the other hand, they proved that if all functions are linear

ce(x) = aex+ be, then the Price of Anarchy is at most 4/3.

4.1.1 Altruism and Spite

As defined in Section 2.3, we posit that user i’s utility is the combination (1−βi)pi(a)+

βi
∑

j pj(a), where βi ∈ [−1, 1] is the user’s altruism level. In order to apply this model

to our scenario of traffic routing, we define the payoff of user i on path P as pi =

−cP (f), where f is the total flow, determined by the actions of all other players. Then,

maximizing utility is equivalent to minimizing latency. The traffic routing model assumes

that there are infinitely many users, each of whom is infinitesimally small. We can still

define the utility function analogously, using the (well-defined) average latency of all

users as the altruistic part. However, because users are infinitesimally small and latency

functions continuous, the average latency of other users will not depend on an individual

user’s action. Thus, as long as β 6= 1, each partially altruistic user will act exactly like a

selfish user. A natural model considering the effect the user has on others should instead

be based on the rate at which the user’s action will affect other users. We thus use the

following definition of a β-altruistic user:
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Definition 4.1.2 Each β-altruistic user (for β ∈ [−1, 1]) chooses a path P so as to

minimize the cost function

c
(β)
P (f) := (1− β)

∑

e∈P ce(fe) + β
∑

e∈P (fece(fe))
′.

The term
∑

e∈P ce(fe) is the selfish part of the cost, while
∑

e∈P (fece(fe))
′ is the altruis-

tic part. (fece(fe))
′ denotes the derivative with respect to fe. Notice that we can rewrite

c
(β)
P (f) =

∑

e∈P ce(fe) + β
∑

e∈P fec
′
e(fe).

While our definition is motivated mathematically, there is a “psychological” interpreta-

tion of the underlying choice: in order to behave (partially) altruistically, infinitesimally

small users must give infinitesimally small weight to their own payoff, which is achieved

implicitly by making the altruistic component the derivative of the social welfare. For an

infinitesimal user when entering or leaving an edge, it is not important and is negligible

how much the absolute change in the total cost on that edge (for every other user on

that edge) is. However, when comparing the change with the size of such an infinitesimal

user, it is important how much the rate of the absolute change in the total cost on that

edge is, meaning how much effect his arrival or leaving has on the other users sharing

that edge. Intuitively, one interpretation of the derivative is that the infinitesimal user

is projecting what would happen “if everyone acted the same way.”

Definition 4.1.2 is similar to the definition of the valuation of a user with a time/money

tradeoff of β in the case of network routing with tolls [25]. However, notice that unlike the

standard model for tolls, the “edge toll” τe a user incurs in our model is traffic-dependent,

namely τe := fec
′
e(fe).
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We say that the users are uniformly β-altruistic if all users are β-altruistic. More

generally, we allow for the case of arbitrary distributions of altruism among the users.

In the general case, for each commodity i, we are given an arbitrary altruism density

function ψi on the interval [−1, 1]. We only require that all these functions ψi be indeed

distributions, i.e., forming a Borel measure of total measure 1. If the rate for commodity

i is ri, then the overall altruism density function is ψ = 1∑
i ri

∑

i riψi. The average

altruism of a distribution ψ is then
∫ 1
−1 tψ(t)dt. An instance of the partially altruistic

traffic routing problem is thus the quadruple (G, r, c, (ψi)). If there is a single commodity

with distribution ψ, we write (G, r, c, ψ), and if the altruism is uniform, we simplify

further to (G, r, c, β).

Proposition 4.1.3 Let (G, r, c, β) be an instance with uniform altruism β ≥ 0. Then,

the Nash flows are the optima of the convex program

Minimize
∑

e

∫ fe
0 c

(β)
e (t)dt

subject to f is a feasible multi-commodity flow for (G, r)

In particular, the instance (G, r, c, β) always possesses a Nash Equilibrium for β ≥ 0.

The proof of this proposition is virtually identical to that of Proposition 2.6.1 from

[81]. The proof there only used the fact that each agent was minimizing a sum of

monotone increasing functions
∑

e ge(fe) to conclude that the Nash Equilibrium was

the flow minimizing the (convex) objective
∑

e

∫ fe
0 ge(t)dt. Thus, it applies equally to

ge(t) := c
(β)
e (t).

We also have the following variational inequality to characterize the Nash flows.
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Proposition 4.1.4 Let (G, r, c, β) be an instance with uniform altruism β ≥ 0. Then,

f is a Nash flow for β-altruistic users if and only if it minimizes
∑

P c
(β)
P (f)f̃P over all

feasible flows f̃ .

Proof. By fixing Nash flow f ,
∑

P c
(β)
P (f)f̃P is the social cost of a feasible flow f̃ ,

where the latency of each path P is the congestion-independent constant c
(β)
P (f). If a

flow f is at Nash equilibrium for β-altruistic users, then a user of commodity i routes

to minimize c
(β)
P (f) over si − ti paths P so

∑

P c
(β)
P (f)f̃P is minimized over all feasible

flows f̃ . Conversely, if a flow f̃ is not at Nash equilibrium for β-altruistic users, a

user can decrease his (perceived) path cost at f̃ by deviation. Thus,
∑

P c
(β)
P (f)f̃P (or,

equivalently,
∑

e c
(β)
e (fe)f̃e) is not minimized.

The situation is not quite as straightforward for the case of non-uniform altruism

distributions ψ, or for negative β. Even for two different values of altruism, there appears

to be no natural convex programming formulation for Nash Equilibria. However, using

a theorem of Mas-Collel [64], we can still prove the existence of Nash Equilibria.

Theorem 4.1.5 Each instance (G, r, c, (ψi)) has a Nash Equilibrium.

Proof. Theorem 1 of Mas-Collel [64] proves that each game of infinitely many players

has a Nash Equilibrium. A game is characterized by a distribution (Borel measure) over

utility functions which are continuous in the action of the player, and the distribution

of actions by the remaining players. It is easy to see that each player in the routing

game has a utility function −c(β)P (f) continuous in the choice of path P (trivially, since

the space of all simple si-ti paths is finite) and in the distribution of other players’

51



www.manaraa.com

strategies f (by continuity of each ce). The utility for paths not connecting si to ti

is −∞ (or an appropriately negative constant). The distribution of altruism values β

implies a corresponding distribution over utility functions. Thus, the theorem of Mas-

Collel implies the existence of Nash Equilibria for routing games.

The proof by Mas-Collel is inherently non-constructive; accordingly, Theorem 4.1.5

does not imply any algorithm for finding such equilibria. Since there always exists a

(pure) Nash Equilibrium of instances (G, r, c, (ψi)), we can define the (pure) Price of

Anarchy (PoA) with altruism distributions (ψi), as ρ(G, r, c, (ψi)) = C(f)/C(f∗), where

f is a Nash flow for (G, r, c, (ψi)), and f
∗ a socially optimal flow for (G, r, c). (General

definitions can be found in Sections 2.1 and 2.2.)

4.1.2 Taxes and Stackelberg Strategies

Our definition of partial altruism naturally relates to two strategies that have been

proposed in the literature for dealing with the selfishness of users: Pigou taxes and

Stackelberg strategies.

The idea of taxes or tolls on edges is to charge users a fee for using an edge. The

assumption is that money and latency can be measured on the same scale, and users will

minimize the (weighted) sum of the two. It is well-known [75] that if the toll charged

on each edge e equals the marginal cost to others (f∗e c
′
e(f

∗
e )) at the optimum solution,

then the Nash Equilibrium will minimize C(f), i.e., be optimal. Our model of partial

altruism can thus be interpreted as charging users a traffic-dependent constant fraction

of the marginal tax, i.e., with respect to the current flow. When the altruism is not

uniform, different users will be charged different taxes βifec
′
e(fe) on edges. Our model
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can thus be considered as investigating the Price of Anarchy when different users have

different tradeoffs between taxes and latency, but their tradeoff stays constant across

different edges. Similar models were considered, e.g., in [29, 89]. Cole et al. [26, 25] also

study optimization problems arising from non-uniform taxation in networks. However,

their goal is to minimize the total tolls, subject to forcing the flow to be optimal, whereas

we study the Price of Anarchy given the taxation scheme of charging a (user-dependent)

fraction of the marginal tax on each edge.

A different strategy for lowering the Price of Anarchy is available when a benevolent

central authority controls a λ fraction of the total traffic. The central authority’s goal is

to route this fraction so as to minimize the total cost C(f), subject to the fact that the

remaining users will subsequently route their traffic selfishly. Algorithms for routing flows

with this objective are called Stackelberg strategies, and the corresponding asymmetric

games Stackelberg games (see, e.g., [80]).

When the altruism distribution has support {0, 1}, and the cumulative distribution

function of ψ is the step function whose value at 0 is 1−λ, and whose value at 1 is 1, the

altruistic users can be interpreted as a central authority, and their flow as a Stackelberg

strategy with the corresponding Price of Anarchy. When the central authority controls

a λ fraction of the traffic, the average altruism is exactly λ, and thus, any bound on the

Price of Anarchy for average altruism λ gives rise to the same bound for Stackelberg

routing. Notice that the converse is not necessarily true: at the moment, it is not known

if every optimal Stackelberg strategy gives rise to a Nash Equilibrium of the routing

game with altruism support {0, 1}.
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4.2 Uniform Altruism

In this section, we focus on the model of uniformly altruistic users: each user is β-

altruistic for −1 ≤ β ≤ 1. Thus, the perceived cost of an edge e to the user is c
(β)
e (x) =

(1−β)ce(x)+β d
dx(xce(x)) = ce(x)+βxc

′
e(x). (Notice that for β = 0, this coincides with

selfishness; β = 1 corresponds to complete altruism, and c
(1)
e (x) is exactly the marginal

cost of e. For β = −1, the users are completely spiteful.) Our first result follows directly

from the definitions of flows at Nash equilibrium and optimum, and gives a (tight) upper

bound on the Price of Anarchy for arbitrary networks, commodities, and arbitrary semi-

convex cost functions.

Proposition 4.2.1 If all cost functions ce are nondecreasing and semi-convex, then for

all networks G and flow rates r, and any altruism level β ∈ (0, 1],

ρ(G, r, c, β) ≤ 1/β.

Proof. Let f̂ be a Nash Equilibrium flow, minimizing the potential function Φ(f) =

∑

e

∫ fe
0 c

(β)
e (t)dt, the objective function of the convex program in Proposition 4.1.3. Also,

let f∗ the optimum flow, minimizing the total cost C(f) =
∑

e

∫ fe
0 (tce(t))

′dt. Simply

from the definition of c
(β)
e (t), it follows that for any flow f , we have Φ(f) ≤ C(f) ≤

1
βΦ(f). Applying the first inequality to f∗ and the second to f̂ , and using the optimality

of f̂ for Φ, we obtain C(f̂) ≤ 1
βΦ(f̂) ≤ 1

βΦ(f
∗) ≤ 1

βC(f∗).

More generally, we derive a result bounding the Price of Anarchy when all cost

functions ce are drawn from a given class of cost functions. Our characterization will be
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in terms of the anarchy value α(β)(C) of a set C of functions for β-altruistic users, which

is defined as a generalization of the anarchy value of functions in [81].

Definition 4.2.2 1. For any cost function c, the anarchy value α(β)(c) of c for β-

altruistic users is defined as

α(β)(c) = supr,x≥0
r·c(r)

x·c(x)+(r−x)·c(β)(r)
,

where 0/0 is defined to 1.

2. For any class C of cost functions, the anarchy value for β-altruistic users α(β)(C)

is

supc∈C,c 6=0 α
(β)(c).

s t

c(β)(r)

c(x)

r

Figure 4.1: Worst-case graphs for uniformly β-altruistic users with rate r

The motivation for this definition of α(β)(c) is that it captures the Price of Anarchy for

uniformly β-altruistic users in a two-node two-link network, where one link has latency

function c and the other has a worst-case constant. See Figure 4.1. Indeed, we will

prove this to be the case in Lemma 4.2.7 below. Notice that Lemma 4.2.7 immediately
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implies that α(C) is a lower bound on the Price of Anarchy in the worst case when all

edge latency functions are chosen from C. Our main theorem in this section shows that

it is also an upper bound for all networks and arbitrary commodities.

We are mostly interested in α(β)(C) when it is finite. In particular, this suggests

defining the spite resistance of C as the least altruistic behavior that C could support.

Formally, bc = inf{β | α(β)(c) < ∞}, and bC = infc∈C bc. It is not difficult to show that

bc = − infr
c(r)
rc′(r) , and that α(β)(c) = ∞ for β ≤ bc. Using L’Hôpital’s rule, one sees

that the monotonicity and convexity of c imply that bc ≥ − limr→∞
c(r)
rc′(r) ≥ −1 for all c,

which also motivates our earlier restriction to altruism values β ≥ −1.

Theorem 4.2.3 Let C be a set of cost functions, and (G, r, c) an instance with cost

functions ce ∈ C. Then,

ρ(G, r, c, β) ≤ α(β)(C).

Proof. Fix an instance (G, r, c) with cost functions ce ∈ C. Let f∗ be an optimal flow

and f a Nash flow for β-altruistic users. By rearranging Definition 4.2.2, we obtain the

bound x · ce(x) ≥ r·ce(r)
α(β)(C) + (x− r) · c(β)e (r) for any x, r ≥ 0. Applying this bound to each

edge e, with x = f∗e and r = fe, we bound

C(f∗) =
∑

e∈E
f∗e ce(f

∗
e )

≥ 1

α(β)(C) ·
∑

e∈E
fece(fe) +

∑

e∈E
(f∗e − fe) · c(β)e (fe)

=
C(f)

α(β)(C) +
∑

e∈E
(f∗e − fe) · c(β)e (fe).
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It remains to show that
∑

e f
∗
e · c(β)e (fe) ≥ ∑

e fe · c
(β)
e (fe). To this end, applying the

variational inequality in Proposition 4.1.4 to f and f∗ proves the desired inequality.

As a corollary of Theorem 4.2.3, we can obtain a tight bound in the case where the

cost functions are polynomials of degree at most p with non-negative coefficients. We

denote this class by Cp.

Theorem 4.2.4 If (G, r, c) has cost functions in Cp, then for any altruism value β ∈

(−1/p, 1],

ρ(G, r, c, β) ≤
(

(1+βp
1+p )1/p(1+βp

1+p − 1− βp) + 1 + βp
)−1

.

Proof. First, notice that bCp = −1/p. It can be easily verified that all subsequent

calculations stay valid for β > −1/p, while for β ≤ −1/p, the Price of Anarchy is

unbounded.

As observed in [81], it suffices to focus only on polynomials c(x) = axi with x ≤ p.

For any instance (G, r, c) with arbitrary polynomials can be equivalently transformed

into one with only such monomials, by replacing each edge with cost function ce(x) =

∑p
i=0 aix

i by a directed path of p + 1 edges, the ith edge of which has cost function

c̃e,i(x) = aix
i. In order to compute the anarchy value α(c) of a nonzero polynomial

function c(x) = axi, we use the equivalent characterization that

α(β)(c) = supr≥0

(

λc(λr)
c(r) + (1− λ)(1 + βrc′(r)

c(r) )
)−1

,
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where λ ∈ [0, 1] solves c(1)(λr) = c(β)(r), and 0/0 is defined to 1. To prove this equivalent

characterization, we first observe that

d
dλ (c(λr)λr + c(β)(r)(r − λr)) = c(1)(λr)r − c(r)r = 0,

so there is indeed a value of λ ∈ [0, 1] solving c(1)(λr) = c(β)(r). By Lemma 4.2.7 below,

α(β)(c) is the price of anarchy in a two-node two-link network, one of whose links has

the cost function c(x), the other link having constant cost c(β)(r). Routing λr units of

flow on the link with cost c(x), and the rest on the link with cost c(β)(r), provides an

optimal flow, while the Nash Equilibrium has all of its flow on the link with cost c(x).

Thus, the ratio of the cost of a Nash flow to that of an optimal flow is

r·c(r)
c(λr)λr+(c(r)+βrc′(r))(r−λr) =

(

λc(λr)
c(r) + (1− λ)(1 + βrc′(r)

c(r) )
)−1

.

Solving for λ in the special case c(x) = axi, we obtain λ = (1+βi
1+i )

1/i, and thus

c(λr)
c(r) = 1+βi

1+i and c′(r)
c(r) = i

r . Then,

α(β)(c) =
(

(1+βi
1+i )

1/i(1+βi
1+i − 1− βi) + 1 + βi

)−1
,

which is independent of a and increasing in i (by a derivative test). Hence, the largest

α(c) is attained for c = xp, giving

α(β)(Cp) =
(

(1+βp
1+p )1/p(1+βp

1+p − 1− βp) + 1 + βp
)−1

,

58



www.manaraa.com

as claimed.

It is not difficult to verify that the previous bound converges to 1
β as p → ∞; the

worst case behavior is in fact attained with polynomials of high degree. However, for

p = 1, Theorem 4.2.4 also allows us to obtain a tighter bound in the special case that

all latency functions are linear.

Corollary 4.2.5 If (G, r, c) has linear cost functions, then for any β ∈ (−1, 1],

ρ(G, r, c, β) ≤ 4
3+2β−β2 .

Notice that for any β > 0, this bound improves on the bound by Roughgarden and

Tardos [86] of 4/3 when all users are completely selfish. As the bound can also be shown

to be tight, it thus characterizes exactly the gain by partial positive altruism with linear

cost functions, and the spite resistance of linear cost functions. In particular, it shows

that linear costs have the highest spite resistance among all classes of cost functions.

Remark 4.2.6 Our results in this section extend straightforwardly to general non-atomic

congestion games (not necessarily network congestion games), so long as all cost func-

tions are nondecreasing. The perceived cost of player i’s strategy si with altruism β is

c
(β)
i (s) =

∑

e∈si c
(β)
e (fe) =

∑

e∈si ce(fe) + βfec
′
e(fe), where s = (s1, ..., sn) is a strategy

profile, fe is the total number of players using resource e, and ce is a nondecreasing

function. With the same definitions of α(β)(C), the proofs of the above proposition and

theorems naturally carry over to this more general setting.
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Finally, we show that the bounds derived in Theorem 4.2.3 are indeed tight, even for

two-node two-link networks:

Lemma 4.2.7 Consider a two-node two-link network with flow rate r = 1, and cost

functions c1(x) = c(x) on the first link, and constant cost function c2(x) = c(β)(r) =

c(r)+βrc′(r) for the second link . Then, the Price of Anarchy of this instance is α(β)(c).

Proof. It is easy to observe from the definition of c2 that all β-altruistic users will end

up using link 1, so that the total cost of the Nash Equilibrium is c(1) = rc(r), while the

socially optimum solution has total cost infx≤1(x · c(x) + (r − x) · c(r) + β(r − x)c′(r)).

Hence, the price of anarchy is exactly α(c).

By applying this characterization together with Theorem 4.2.4 and letting the de-

gree of the polynomial go to ∞, we obtain instances (G, r, c) whose Price of Anarchy

approaches 1/β arbitrarily closely. Similarly, by choosing p = 1, we obtain that the

bound in Corollary 4.2.5 is tight.

4.3 Non-Uniform Altruism

In this section, we extend our results to the more general and realistic case where dif-

ferent users can have different altruism levels. In the most general case, we are given a

distribution ψ of altruism. The existence of Nash Equilibria in this model was shown

non-constructively as Theorem 4.1.5. Even for a single commodity and an altruism

distribution with support {0, 1}, and arbitrarily large constant β̄, a recent result on

Stackelberg routing due to Bonifaci et al. [12] shows that the Price of Anarchy can

become unbounded.
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Thus, we focus here on the case of single-commodity traffic in parallel link networks.

Parallel link networks have been studied by Roughgarden [80]; among others, they natu-

rally model the assignment of infinitesimally small jobs to machines with load-dependent

latencies. Formally, a parallel link network has two nodes s, t, and m parallel edges

e1, . . . , em from s to t. Our main theorem in this section gives a (tight) upper bound on

the Price of Anarchy in the presence of partial altruism for single commodity parallel

link networks and arbitrary (convex) cost functions. To make the argument work, we

need our set of cost functions C closed under addition of constants.

Theorem 4.3.1 If all cost functions ce are convex and nondecreasing, then for parallel

link networks G and flow rates r, and any overall altruism density function ψ with

nonnegative support and average altruism β̄,

ρ(G, r, c, ψ) ≤ 1/β̄.

We will prove Theorem 4.3.1 as a corollary of the following more general result,

bounding the price of anarchy in terms of the set of functions permissible as edge laten-

cies.

Theorem 4.3.2 If all cost functions ce ∈ C are convex and nondecreasing, then for

parallel link networks G and flow rates r, and any overall altruism density function ψ

with non-negative support,

ρ(G, r, c, ψ) ≤
(

∫ 1
0 ψ(t)

1
α(t)(C)dt

)−1
.
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Proof. Let f denote the flow at Nash Equilibrium. We first show that without loss of

generality, we can assume that each link e contains only one type of users (i.e., if users

have different altruism values β, β′, then they do not share a link) and that the support

of ψ is finite. To see this, assume that f has users of altruism values β < β′ sharing an

edge e. Now replace all users on e with altruism β by users with altruism β’. f must still

be a flow at Nash Equilibrium for the new instance (because β′-altruistic users are on

link e in Nash Equilibrium). By repeating this process, we eventually obtain an instance

with altruism density ψ′ which stochastically dominates ψ and has finite support. For

this new ψ′, the bound on the Price of Anarchy for f provided by the right-hand side of

Theorem 4.3.2 can only be smaller, giving us an even better bound than required. Thus,

we can from now on focus on the case described above.

Let 0 ≤ β1 < β2 < . . . < βk ≤ 1 be the (finite) support of ψ, where the rate of

βi-altruistic users is ri (so
∑k

i=1 ri = r). We need to show that for all flows g of rate r

(in particular the optimum flow), we have

C(g) ≥ (
k
∑

i=1

ri
r

1

α(βi)(C) ) · C(f), (4.1)

which we will do by induction on k. The base case k = 0 is of course trivial.

For the inductive step, let f be a Nash Equilibrium flow, and g any flow of rate r.

For each i, let Ei be the set of edges with positive flow of βi-altruistic users under f .

Notice that by our assumption, the sets Ei are disjoint. For any set E′ of edges, let

f(E′) =
∑

e∈E′ fe (similarly, g(E′)) denote the total flow on E′. Let E′ := E \E1 denote

the set of all edges not used by β1-altruistic users.
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Intuitively, because the more altruistic users prefer the edge set E′ over E1, we would

expect a “good” flow g to do the same. Indeed, we first show that the latency under f

on all edges in E1 is no larger than in E′, while the marginal cost, i.e., (x · c(x))′, is no

larger in E′ than in E1. Let e ∈ E1, e
′ ∈ Ej , j > 1 be arbitrary links with positive flow

f . Thus, all users on e have altruism β1, while all users on e′ have altruism βj > β1.

Because f is at Nash Equilibrium,

ce(fe) + β1fec
′
e(fe) ≤ ce′(fe′) + β1fe′c

′
e′(fe′), (4.2)

ce(fe) + βjfec
′
e(fe) ≥ ce′(fe′) + βjfe′c

′
e′(fe′). (4.3)

Combining appropriately scaled versions of Inequality (4.2) and Inequality (4.3) gives us

that

ce(fe) ≤ ce′(fe′), (4.4)

(1− ξ)ce(fe) + (βj − ξβ1)fec
′
e(fe) ≥ (1− ξ)ce′(fe′) + (βj − ξβ1)fe′c

′
e′(fe′), (4.5)

where ξ for 0 ≤ ξ ≤ 1 is a scalar, which we can set later.

Our high-level strategy will be to bound the Nash Equilibrium flow on E′ against

a restriction g′ of g of rate r − r1 on E′ by induction, and use a comparison argument

for the flow on E1. We will construct a flow h of rate r1 whose cost is cheaper than

a component of g of the same rate, and which is optimal for modified “residual” edge

costs. We can thus compare it against the flow f on E1 using Theorem 4.2.3.
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Define f ′ to be the restriction of f to the edge set E′, i.e., f ′e = fe for e ∈ E′,

and f ′e = 0 for e ∈ E1. Thus, f ′ is a flow of rate r′ := r − r1. Define the modified

cost function c̃e(x) := ce(f
′
e + x) + β1f

′
ec

′
e(f

′
e) for all edges e. Thus, c̃e(x) is the cost

incurred by flow on e if f ′e is unalterable, but not considered part of the actual flow,

plus a suitable constant term to “mimic” the altruistic component. This definition

of c̃e(x) implies that the perceived cost of edge e to β1-altruistic users is c̃
(β1)
e (x) =

ce(f
′
e+x)+β1xc

′
e(f

′
e+x)+β1f

′
ec

′
e(f

′
e). Thus, for e ∈ E′, we have that c̃(β1)

e (x) ≥ c(β1)(f ′e)

for all x ≥ 0, while for e ∈ E1, because f
′
e = 0, c̃

(β1)
e (x) = c(β1)(x+f ′e). In particular, this

implies that the β1-altruistic users are at Nash Equilibrium with respect to the modified

cost functions c̃e(x). Hence, by Theorem 4.2.3, and because c̃e(x) = ce(x) for all e ∈ E1,

we get C(f − f ′) = C̃(f − f ′) ≤ α(β1)(C) · C̃(f̃) where f̃ is an optimum flow of rate r1

with respect to the modified edge cost functions c̃e.

In order to compare f ′ against the part of g on the edge set E′, it will be useful to

assume that g(E′) ≥ f(E′). We will show next that we can make this assumption w.l.o.g.

For assume that it did not hold. Then, let e ∈ E1, e
′ ∈ E′ be edges with ge > fe > 0

and ge′ < fe′. (The existence of e, e′ follows from the assumption g(E′) < f(E′)). By

the bound on the derivatives in Inequality (4.5), and using the convexity of the edge

latency functions, we show that (gece(ge))
′ ≥ (fece(fe))

′ ≥ (fe′ce′(fe′))
′ ≥ (ge′ce′(ge′))

′

in the following. The first and last inequalities hold simply by the semi-convexity of ce

and ce′ , and the second equality is obtained by setting ξ =
1−βj

1−β1
to get 1− ξ = βj − ξβ1

so (fece(fe))
′ = ce(fe) + fec

′
e(fe) ≥ ce′(fe′) + fe′c

′
e′(fe′) = (fe′ce′(fe′))

′. Thus, g can be

made cheaper by moving some of its flow from e to e′. By repeating this process, we can

thus assume that g(E′) ≥ f(E′).
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Let γ be such that C(f − f ′) = γC(f). Because f ′ and f − f ′ use disjoint edge sets,

we get C(f ′) = (1− γ)C(f). (Notice that the assumption of disjoint edge sets is indeed

crucial here. Due to the non-constant cost of edges, in general, it does not hold that

C(f) + C(f ′) = C(f + f ′).)

By Lemma 4.3.3 below, we can decompose g = h + g′, where g′ is a flow of rate r′

entirely on E′, and h is a flow of rate r1 satisfying the property (4.7), namely C̃(f̃) ≤
∑

e hece(ge) +
∑

e g
′
e(ce(ge) − ce(g

′
e)). We can thus apply induction on the flows f ′ and

g′ of rate r′ on the modified graph with edge set E′. Notice that while f ′ may not be an

Equilibrium flow on E, it is indeed an Equilibrium flow on E′. Thus, we obtain that

C(g) = C(g′) +
∑

e

h(e)ce(ge) +
∑

e

g′e(ce(ge)− ce(g
′
e))

≥ (

k
∑

i=2

ri
r′

1

α(βi)(C) ) · C(f ′) +
1

α(β1)(C)C(f − f ′) (4.6)

=

(

(

k
∑

i=2

ri
r′

1

α(βi)(C) ) · (1− γ) +
1

α(β1)(C) · γ
)

· C(f).

We next show that γ ≤ r1
r . By Inequality (4.4), every user on E1 incurs lower delay

than every user on Ej , and consequently on E′. Thus, the average delay 1
r1
C(f − f ′) of

users on E1 is at most the average delay 1
rC(f) of all users, so C(f − f ′) ≤ r1

r C(f).

The lower bound (4.6) is a convex combination of the non-negative terms
∑k

i=2
ri
r′

1
α(βi)(C)

and 1
α(β1)(C) , with coefficients (1 − γ) and γ. The anarchy value α(β)(C) is a monotone

non-increasing function of β, so the weighted average reciprocal anarchy value for altru-

ism levels β2, . . . , βk is at least the reciprocal for β1. Thus, the convex combination is
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minimized when the coefficient γ of the smaller term 1
α(β1)(C) is as large as possible, i.e.,

when γ = r1/r. Substituting this bound,

C(g) ≥ ((
k
∑

i=2

ri
r′

1

α(βi)(C) ) ·
r′

r
+

1

α(β1)(C) ·
r1
r
) · C(f)

= (

k
∑

i=1

ri
r′

1

α(βi)(C) ) · C(f),

completing the inductive step, and thus the proof.

Lemma 4.3.3 Let f ′ be a flow of rate r′ using only edges from E′, and define c̃e(x) :=

ce(f
′
e + x) + β1f

′
ec

′
e(f

′
e). Let g be any flow of rate r = r′ + r1, with g(E

′) ≥ r′. Let f̃ be

the optimum flow of rate r1 with respect to edge costs c̃e. Then, g can be decomposed as

g = h+ g′, where g′ is a flow of rate r′ on E′, satisfying

C̃(f̃) ≤
∑

e

hece(ge) +
∑

e

g′e(ce(ge)− ce(g
′
e)). (4.7)

Proof. Let ∆ := g(E′) − r′ ≥ 0 be the amount of “excess flow” that g sends on E′,

compared to f . We begin by setting he = ge for all edges e ∈ E1, giving us a flow of

rate r1 −∆. So we need to add ∆ more units of flow to h. Let E′′ := {e ∈ E′ | ge ≥ f ′e}

be the set of edges in E′ on which g sends more flow than f ′. Thus, we have that

g(E′′)− f ′(E′′) ≥ g(E′)− f ′(E′) = ∆. In particular, we can define a flow h of total rate
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∆ on E′′, such that he ≤ ge − f ′e for all e ∈ E′′. For all other edges e, we set he = 0, and

thus obtain a flow h of rate r1, such that he ≤ ge for all edges e. We then have that

∑

e

hece(ge) =
∑

e∈E1

hece(he) +
∑

e∈E′′

hece(ge)

≥
∑

e∈E1

hece(he) +
∑

e∈E′′

hece(f
′
e + he),

where the inequality follows from the monotonicity of the latencies ce. Next, because

g′e ≥ f ′e for all e ∈ E′, and the latency functions are convex, ce(ge)−ce(g′e)
he

≥ c′e(f
′
e) for all

e ∈ E′′ with he > 0. Combining this bound with the fact that β1 ≤ 1, we obtain that

∑

e

g′e(ce(ge)− ce(g
′
e)) ≥

∑

e∈E′′

g′e(ce(ge)− ce(g
′
e))

≥
∑

e∈E′′

f ′eβ1hec
′
e(f

′
e).

Summing the previous two inequalities now gives us

∑

e

hece(ge) +
∑

e

g′e(ce(ge)− ce(g
′
e))

≥
∑

e∈E1

hece(he) +
∑

e∈E′′

hece(f
′
e + he) +

∑

e∈E′′

heβ1f
′
ec

′
e(f

′
e)

=
∑

e

hec̃e(he)

≥ C̃(f̃)

where the final inequality follows from the optimality of f̃ with respect to the cost

functions c̃e.
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Proof of Theorem 4.3.1. If C is specifically the set of all increasing semi-convex func-

tions, Proposition 4.2.1 implies that 1
α(t)(C) ≥ t. Substituting this bound into the integral

gives us that

ρ(G, r, c, ψ) ≤
(

∫ 1
0 ψ(t)tdt

)−1
= 1/β̄.

It would of course be desirable to extend Theorems 4.3.1 and 4.3.2 to distributions

including negative support. However, such an extension is in general not possible. One

can construct scenarios in which almost all of the latency is incurred by a small fraction

of spiteful users who together congest a link with very steep increase. At the same time,

all altruistic users use links with very small constant latency. Then, the PoA is much

larger than 1, while the bounds of both theorems would require it to be close to 1.

An immediate corollary of Theorem 4.3.1 can be obtained by choosing the distribution

with a rate of λ users being completely altruistic, and 1−λ users being completely selfish.

Since β̄ = λ for this distribution, Theorem 4.3.1 immediately implies

Corollary 4.3.4 In parallel link networks, the Price of Anarchy under Stackelberg rout-

ing with a λ-fraction of traffic being controlled by a central authority is at most 1/λ.

This result was of course already proved constructively (and giving efficient algo-

rithms) by Roughgarden [80]; nevertheless, it is interesting that it follows directly from

our general result. More generally, by using the same distribution with support {0, 1} in

Theorem 4.3.2, we obtain the following corollary:
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Corollary 4.3.5 In parallel link networks, the Price of Anarchy under Stackelberg rout-

ing with a λ-fraction of traffic controlled by a central authority is at most ( 1−λ
α(C) + λ)−1.

Notice that Corollary 4.3.5 improves (albeit in a non-constructive way) a result of

Swamy [90] for Stackelberg routing: we bound the PoA under Stackelberg routing by

the weighted harmonic mean of the PoA for selfish and altruistic users, whereas Swamy’s

bounds give the arithmetic mean. It is known that the harmonic mean is always bounded

above by the arithmetic mean. We can also show that the case of Stackelberg routing

is in fact the worst case for the bound of Theorem 4.3.2, in the sense that the right-

hand side is maximized. While the bound of Theorem 4.3.2 will in general not be

tight, this nevertheless gives rise to the philosophical interpretation that, conditioned on

a given average altruism level β̄, the scenario in which completely altruistic users or a

central authority compensate for completely selfish users is the worst case, while uniform

altruism through the population is the best case.

Proposition 4.3.6 Conditioned on the mean of ψ being any given β̄, the quantity

(

∫ 1
0 ψ(t)

1
α(t)(C)dt

)−1
is maximized when ψ has point mass of β̄ on 1 and 1− β̄ on 0. It

is minimized when ψ has a point mass of 1 on β̄.
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Proof. We will show that 1
α(β)(C) is concave as a function of β. Both results then follow

readily from Jensen’s Inequality. To prove concavity, let p1, p2 ≥ 0 satisfy p1 + p2 = 1.

For any cost function c ∈ C, Definition 4.2.2 thus gives us

1

α(p1β1+p2β2)(c)

= inf
λ

λc(λr) + (1− λ)c(r) + (1− λ)(p1β1 + p2β2)c
′(r)

c(r)

= inf
λ

(p1(λc(λr) + (1− λ)c(r) + (1− λ)β1c
′(r))

c(r)

+
p2(λc(λr) + (1− λ)c(r) + (1− λ)β2c

′(r))
c(r)

)

≥ inf
λ

p1(λc(λr) + (1− λ)c(r) + (1− λ)β1c
′(r))

c(r)

+ inf
λ

p2(λc(λr) + (1− λ)c(r) + (1− λ)β2c
′(r))

c(r)

= p1
1

α(β1)(c)
+ p2

1

α(β2)(c)
.

Finally, we take an infimum over all c ∈ C on both sides to complete the proof of

concavity.

4.4 Conclusions and Future Work

We proved a 1/β bound on the Price of Anarchy even for worst-case networks, la-

tency functions, and commodities, under the assumption that all users are (at least)

β-altruistic, and β > 0. We extended this result to non-uniform altruism distributions

for single-commodity flows in parallel link networks. Among others, this result recovers

and improves recent bounds on Stackelberg routing by Roughgarden and by Swamy.
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Our work suggests many interesting directions for further research. First, the results

should be generalized to (more general) network topologies instead of parallel links. No-

tice that any such result would immediately imply corresponding bounds on Stackelberg

routing, so the lower bound of Bonifaci et al. [12] precludes an extension to arbitrary

single-commodity flows. However, an extension to series-parallel graphs seems plausible

at this point.

While we proved the existence of Nash Equilibria for all routing games with non-

atomic users, regardless of the distributions of altruism, the proof is non-constructive.

The work of Roughgarden [80] implies that finding the best Stackelberg strategy is NP-

complete. However, it would be interesting whether Stackelberg strategies meeting our

bound can always be found efficiently. Alternatively, in light of recent results proving

that finding Nash Equilibria is PPAD-complete [22], it may be possible that finding Nash

Equilibria for traffic routing games with two (or more) altruism values is also PPAD-

complete.

Another interesting question is whether users can learn equilibrium routing strategies

using a natural learning algorithm in repeated games. With or without the information

about non-uniform altruism levels, we are aiming at finding simple strategies (in the

style of [10]) wherein each bidder adapts her routing strategy based on the cost derived

from earlier routing results.
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Chapter 5

Congestion Games

In this chapter, we are considering altruism in congestion games where players are atomic.

Congestion games include, but are more general than, network congestion games, the

non-atomic version of which is (traffic) routing games. It takes a different set of tech-

niques to deal with atomic players. Note that the results in Section 5.2 differ from those

in Section 4.2 in terms of the trend of impact of altruism on the PoA (decreasing or

increasing the PoA) while the results in Section 5.3 for non-uniform altruism bear some

similarity to those in Section 4.3, but lose a constant factor exactly due to atomicity.

The results of this chapter are based on the paper [20].

5.1 Preliminaries

We have already given the definition of a general congestion game in the beginning of

Section 4.1. In this chapter, we are back to general congestion games, not just network

congestion games, which were discussed in the previous chapter. Congestion games are

a class of games first proposed by Rosenthal [76]. Rosenthal showed that any congestion

game is a potential game. A potential game is a game, where existence of pure Nash
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equilibria can be guaranteed by a potential function, which is defined to be a function

whose difference in value when any player deviates is equal to the difference in value

of his individual utility/cost function. Monderer and Shapley [68] proved that, for any

potential game, there is a congestion game with the same potential function. Thus,

congestion games are equivalent to potential games. Unlike in the previous chapter

where players are non-atomic, we deal with atomic players, each of which is of size 1, in

congestion games here. Congestion games generalize (traffic) routing games or network

congestion games in the previous chapter, where strategy spaces are just paths in a graph.

We mainly focus on congestion games with linear cost functions. In a linear congestion

game, the cost function of every resource e ∈ E is of the form ce(x) = aex + be, where

ae, be ∈ R
+ are non-negative real numbers.

For congestion games with atomic entirely selfish players, Christodoulou and Kout-

soupias proved that the PoA of pure Nash equilibria is 5/2 for linear cost functions

while it increases with the highest degree for polynomial functions [23]. With partial

altruism introduced, our bounds reveal an unexpected trend: for congestion games, the

worst-case robust PoA increases with increasing altruism in contrast to the results in

the previous chapter for non-atomic (network) congestion games where the PoA for pure

Nash equilibria decreases with increasing altruism. We also show that the increase in the

PoA is not a universal phenomenon: For symmetric singleton linear congestion games,

we derive a bound on the PoA for pure Nash equilibria that decreases as the level of

altruism increases, which is similar to the results in the previous chapter for non-atomic

(network) congestion games. There are other results showing the worst-case robust PoA
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increases with increasing altruism in cost-sharing games as well, and for valid utility

games, it remains constant and is not affected by altruism [20].

5.1.1 Altruism

We study β-altruistic congestion games defined as follows, which falls into our general

model of altruism in Section 2.3:

Definition 5.1.1 The β-altruistic congestion game G is defined as the congestion game

Gβ = (N, {Si}i∈N , {c(βi)
i }i∈N ), where for every i ∈ N and s ∈ S,

c
(βi)
i (s) = (1− βi)ci(s) + βiC(s).

A βi-altruistic player has his perceived cost as above, in comparison to Definition 4.1.2

using derivatives in the altruistic term.

5.1.2 Smoothness

Many proofs bounding the Price of Anarchy for specific games (e.g., [81, 92]) use the

fact that deviating from an equilibrium to the strategy at optimum is not beneficial

for any player. The addition of these inequalities, combined with suitable properties

of the social cost function, then gives a bound on the equilibrium’s cost. Roughgarden

[84] recently captured the essence of this type of argument with his definition of (λ, µ)-

smoothness of a game, thus providing a generic template for proving bounds on the Price

of Anarchy. Indeed, because such arguments only reason about local moves by players,

they immediately imply bounds not only for Nash equilibria but for all the classes of
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general equilibria defined in Chapter 2 all the way to the outcomes of no-regret sequences

of play [11, 10] (coarse correlated equilibria). Recent work has explored both the limits of

this concept [71] and a refinement requiring smoothness only in local neighborhoods [85].

The latter permits more fine-grained analysis of games, but applies only to correlated

equilibria and their subclasses.

We extend the concept of (λ, µ)-smoothness to altruistic strategic games. This allows

us to quantify the Price of Anarchy of these games with respect to the very broad

class of coarse correlated equilibria. For notational convenience, we define C−i(s) =

C(s)− ci(s) =
∑

j 6=i cj(s) for strategy profile s.

Definition 5.1.2 ((λ, µ, β)-smoothness) Let Gβ be a β-altruistic congestion game with

social cost function C. Gβ is (λ, µ, β)-smooth if for any two strategy profiles s, s∗ ∈ S,

n
∑

i=1

ci(s
∗
i , s−i) + βi(C−i(s

∗
i , s−i)− C−i(s)) ≤ λC(s∗) + µC(s), (5.1)

for player i changing strategy from si to s
∗
i while the others stay at s−i.

For β = (0, ..., 0) = 0, this definition coincides with Roughgarden’s notion of (λ, µ)-

smoothness. To gain some intuition, consider two strategy profiles s, s∗ ∈ S, and a

player i ∈ N who switches from his strategy si under s to s∗i , while the strategies of the

other players remain fixed at s−i. The contribution of player i to the left-hand side of

5.1 then accounts for the individual cost that player i perceives after the switch plus βi

times the difference in social cost caused by this switch. The sum of these contributions

needs to be bounded by λC(s∗) + µC(s).
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Therefore, if Gβ is (λ, µ, β)-smooth with µ < 1, then the coarse price of anarchy

of Gβ is at most λ
1−µ : for player i changing strategy from si to s∗i while the others

stay at s−i, (1 − βi)ci(s) + βiC(s) ≤ (1 − βi)ci(s
∗
i , s−i) + βiC(s∗i , s−i), which implies

that
∑n

i=1(1 − βi)ci(s) + βiC(s) ≤ ∑n
i=1(1 − βi)ci(s

∗
i , s−i) + βiC(s∗i , s−i), equivalent to

∑n
i=1 ci(s)+βiC−i(s) ≤

∑n
i=1 ci(s

∗
i , s−i)+βiC−i(s

∗
i , s−i); after rearrangement, we derive

that C(s) =
∑n

i=1 ci(s) ≤
∑n

i=1 ci(s
∗
i , s−i) + βi(C−i(s

∗
i , s−i) − C−i(s)) so with (λ, µ, β)-

smoothness, the bound λ
1−µ is obtained. Note that this also holds for more restricted

equilibria including correlated equilibria, mixed Nash equilibria, and pure Nash equilibria

since the argument works for arbitrary pairs of strategy profiles s, s∗.

Definition 5.1.3 The robust Price of Anarchy is defined as the best possible bound on

the coarse price of anarchy obtainable by a (λ, µ, β)-smoothness argument.

Later, with uniform altruism we will see that the (λ, µ, β)-smoothness arguments can

give us some tight bounds even for pure Nash equilibria.

5.2 Linear Congestion Games

Linear congestion games have the advantage that pure Nash equilibria of their altruistic

games always exist [46], which may not be the case for arbitrary congestion games. We

consider uniform altruism where βi = β.

Proposition 5.2.1 Let Gβ be a uniformly β-altruistic linear congestion game. Then,

Gβ is an exact potential game with potential function Φ(β)(s) = (1 − β)Φ(s) + βC(s),

where Φ(s) =
∑

e∈E
∑fe(s)

x=1 ce(x) is Rosenthal’s potential function.
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Proof. Assume that player i changes strategy from si to s
′
i while the others stay at

s−i. Then, his change in perceived cost is

c
(β)
i (s)− c

(β)
i (s′i, s−i)

= (1− β)
(

∑

e∈Si\S′

i

(ce(fe(s))− ce(fe(s)− 1)) +
∑

e∈S′

i\Si

(ce(fe(s)) − ce(fe(s) + 1))
)

+β
(

∑

e∈Si\S′

i

(fece(fe(s)) − (fe − 1)ce(fe(s) − 1))

+
∑

e∈S′

i\Si

(fece(fe(s)) − (fe + 1)ce(fe(s) + 1))
)

= Φ(β)(s)− Φ(β)(s′i, s−i).

We first prove a lemma for every i for arbitrary semi-convex cost functions ce.

Lemma 5.2.2 For player i changing strategy from si to s
∗
i while the others stay at s−i,

C(s∗i , s−i)− C(s) ≤ (
∑

e∈s∗i

(fe + 1)ce(fe + 1)−
∑

e∈s∗i

fece(fe))

−(
∑

e∈si
fece(fe)−

∑

e∈si
(fe − 1)ce(fe − 1)).
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Proof. Simply using the definition of the social cost, we have that

C(s∗i , s−i)− C(s) =
n
∑

j=1

cj(s
∗
i , s−i)−

n
∑

j=1

cj(s)

=
∑

e∈s∗i \si

(fe + 1)ce(fe + 1) +
∑

e∈si\s∗i

(fe − 1)ce(fe − 1) +
∑

e∈s∗
i
∩si

fece(fe) +
∑

e/∈s∗i∪si

fece(fe)

−
∑

e∈s∗i \si

fece(fe)−
∑

e∈si\s∗i

fece(fe)−
∑

e∈s∗i∩si
fece(fe)−

∑

e/∈s∗i∪si

fece(fe)

=
∑

e∈s∗i \si

(fe + 1)ce(fe + 1)−
∑

e∈s∗i \si

fece(fe)−
∑

e∈s∗i∩si
fece(fe) +

∑

e∈s∗i∩si
fece(fe)

−(
∑

e∈si
fece(fe)−

∑

e∈si\s∗i

(fe − 1)ce(fe − 1)−
∑

e∈s∗i∩si
fece(fe))

=
∑

e∈s∗i \si

(fe + 1)ce(fe + 1)−
∑

e∈s∗i

fece(fe)

+
∑

e∈s∗
i
∩si

fece(fe) +
∑

e∈s∗
i
∩si

(fe + 1)ce(fe + 1)−
∑

e∈s∗
i
∩si

fece(fe)

−(
∑

e∈si
fece(fe)−

∑

e∈si\s∗i

(fe − 1)ce(fe − 1)

−
∑

e∈s∗i∩si
fece(fe) +

∑

e∈s∗i∩si
(fe + 1)ce(fe + 1)−

∑

e∈s∗i∩si
fece(fe))

≤
∑

e∈s∗i

(fe + 1)ce(fe + 1)−
∑

e∈s∗i

fece(fe)

−(
∑

e∈si
fece(fe)−

∑

e∈si\s∗i

(fe − 1)ce(fe − 1)−
∑

e∈s∗i∩si
(fe − 1)ce(fe − 1))

=
∑

e∈s∗i

(fe + 1)ce(fe + 1)−
∑

e∈s∗i

fece(fe)− (
∑

e∈si
fece(fe)−

∑

e∈si
(fe − 1)ce(fe − 1)),

where the last inequality follows from the semi-convexity of ce, i.e.,

(fe + 1)ce(fe + 1)− fece(fe) ≥ fece(fe)− (fe − 1)ce(fe − 1)
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for every e, so

∑

e∈s∗i∩si
(fe + 1)ce(fe + 1)−

∑

e∈s∗i∩si
fece(fe) ≥

∑

e∈s∗i∩si
fece(fe)−

∑

e∈s∗i∩si
(fe − 1)ce(fe − 1).

We now can use the above lemma to bound the C(s∗i , s−i) − C(s) term and then

obtain the Price of Anarchy bound for linear cost functions.

Theorem 5.2.3 For linear congestion games with 0 ≤ β ≤ 1, the robust Price of Anar-

chy of uniformly β-altruistic linear congestion games is at most 5+4β
2+β .

Proof. Let ce(fe) = aefe + be for ae, be ≥ 0 and fe ∈ N0 be the cost function for

resource e. By Lemma 5.2.2 and linearity of ce, for player i changing from si to s
∗
i while

the others stay at s−i,

C(s∗i , s−i)− C(s) =
∑

e∈s∗i

(ae(fe + 1)2 + be(fe + 1))−
∑

e∈s∗i

(aef
2
e + befe)

−(
∑

e∈si
(aef

2
e + befe)−

∑

e∈si
(ae(fe − 1)2 + be(fe − 1)))

=
∑

e∈s∗i

(2aefe + ae + be)−
∑

e∈si
(2aefe − ae + be).

Summing over all players, we get that for 0 ≤ β < 1 (the case β = 1 will be addressed

later),

n
∑

i=1

ci(s) ≤
n
∑

i=1

ci(s
∗
i , s−i) +

β

1− β

n
∑

i=1

(C(s∗i , s−i)− C(s))

≤
∑

e

(aef
∗
e (fe + 1) + bef

∗
e ) +

β

1− β
(
∑

e

f∗e (2aefe + ae + be)−
∑

e

fe(2aefe − ae + be)).
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We can bound aef
∗
e (fe + 1) + bef

∗
e + β

1−β (f
∗
e (2aefe + ae + be)−

∑

e fe(2aefe − ae + be))

for every e. It is enough to find c1, c2 such that

aef
∗
e (fe + 1) + bef

∗
e +

β

1− β
(f∗e (2aefe + ae + be)−

∑

e

fe(2aefe − ae + be))

≤ c1(aef
∗
e
2 + bef

∗
e ) + c2(aef

2
e + befe),

for every e.

Let y = f∗e , x = fe and a = ae, b = be so

ay(x+ 1) + by +
β

1− β
(y(2x+ a+ b)−

∑

e

x(2ax− a+ b))

= a(y(x+ 1) +
β

1− β
(y(2x+ 1)− x(2x− 1))) + b(

1

1− β
y − β

1− β
x).

We first find c1, c2 such that

y(x+ 1) +
β

1− β
(y(2x + 1)− x(2x− 1))

= y(x+ 1) +
β

1− β
(y(2x + 1) + x))− 2β

1− β
x2

≤ (c′1 −
2β

1− β
)x2 + c2y

2

= c1x
2 + c2y

2,

i.e., c′1, c2 such that

x+ 1

y
+

β

1− β
· 2x+ 1

y
+

β

1− β
· x
y2

− c′1(
x

y
)2 ≤ c2.
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Then, we show that such a choice of c1, c2 also works for

a(y(x+ 1) +
β

1− β
(y(2x+ 1)− x(2x− 1))) + b(

1

1− β
y − β

1− β
x)

≤ c1(ax
2 + bx) + c2(ay

2 + by).

Feasible c′1, c2 satisfy

c2 = max
y∈N,x∈N0

(
x+ 1

y
+

β

1− β
· 2x+ 1

y
+

β

1− β
· x
y2

− c′1(
x

y
)2)

= max
x∈N0

(x+ 1 +
β

1− β
(3x+ 1)− c′1x

2).

(x + 1 + β
1−β (3x + 1) − c′1x

2) is maximized at x = 1 for 1
3 + β

1−β ≤ c′1 < 1 + 3β
1−β so

c2 = 2 + 4β
1−β − c′1. Also, c2

1−c1
=

2+ 4β
1−β

−c′1

1−c′1+
2β
1−β

is minimized at c′1 = 1
3 + β

1−β . Thus, c1 =

c′1− 2β
1−β = 1

3−
β

1−β , c2 =
5
3+

3β
1−β , and

c2
1−c1

= 5+4β
2+β . Since − β

1−βx ≤ c1x and 1
1−β y ≤ c2y,

a(y(x+1)+ β
1−β (y(2x+1)−x(2x− 1)))+ b( 1

1−β y−
β

1−βx) ≤ c1(ax
2 + bx)+ c2(ay

2+ by)

as well.

This bound of 5+4β
2+β approaches 3 when β approaches 1. Thus, 5+4β

2+β also works for

the case β = 1.

The following example shows that the upper bound on the robust Price of Anarchy given

above is tight for uniformly β-altruistic games, even for pure Nash equilibria.

Lemma 5.2.4 The Price of Anarchy bound of 5+4β
2+β for 0 ≤ β ≤ 1 is tight.

Proof. Let n ≥ 3 be the number of player, and E be the set of 2n resources. We can

divide E into two subsets E1 = {h1, ..., hn} and E2 = {g1, ..., gn}, each of n resources.
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ce(fe) = (1 + β)fe for e ∈ E1 and ce(fe) = fe for e ∈ E2. Each player i has two pure

strategies: {hi, gi} and {hi−1, hi+1, gi+1}.

The social optimum arises when each player selects the first strategy, and has cost

(1 + β)n+ n = (2+ β)n. A Nash equilibrium exists when each player selects the second

strategy, shown as follows. When each player selects the second strategy, the social

cost is 4(1 + β)n + n = (5 + 4β)n. If a player deviates to select the first strategy

while the other players still select the second strategy, the social cost would become

4(1+β)n+n+(32−22)·(1+β)+(22−12)−(22−12)·(1+β)·2−(12−02) = (5+4β)n+1−β.

Each player selecting the second strategy gives each player a perceived individual cost of

(1−β)(4(1+β)+1)+β(5+ 4β)n = C. The deviation would give the player a perceived

individual cost of (1− β)(3(1 + β) + 2) + β((5 + 4β)n + 1− β) = C ′. We can see that

C − C ′ = (1− β)(4(1 + β) + 1) + β(5 + 4β)n

−(1− β)(3(1 + β) + 2)− β((5 + 4β)n + 1− β)

= (1− β)(5 + 4β − 5− 3β) + β(−1 + β) = 0.

So, there is a Nash equilibrium when each player selects the second strategy. We get the

Price of Anarchy value of at least (5+4β)n
(2+β)n = 5+4β

2+β for 0 ≤ β ≤ 1.

We have shown that the PoA for several general equilibrium concepts can actually

increase with β. This is somewhat surprising, and one would have perhaps expected the

opposite, the PoA decreases with β. Also notice that this differs from the results in the

previous chapter where the PoA improves with altruism. As mentioned in Section 1.2,

the increase is due to partially altruistic players having stronger disincentive to move
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from the suboptimal strategy, making worse system states stable and stay in the set

of equilibrium states. Therefore, it is implied that the best stable solution can also be

chosen from a larger set so the PoS should decrease.

We now analyze the pure Price of Stability of β-altruistic congestion games. Clearly,

an upper bound on the pure Price of Stability extends to the mixed, correlated and coarse

Price of Stability. The proof of the following proposition exploits a standard technique

to bound the pure PoS of exact potential games (see, e.g., [74]).

Proposition 5.2.5 The pure Price of Stability of uniformly β-altruistic linear conges-

tion games is at most 2
1+β .

Proof. LetGβ be a uniformly β-altruistic linear congestion game. By Proposition 5.2.1,

Gβ is an exact potential game with potential function Φ(β)(s) = (1 − β)Φ(s) + βC(s),

where Φ(s) =
∑

e∈E
∑fe(s)

i=1 i is Rosenthal’s potential function. Observe that

Φβ(s) = (1− β)
∑

e∈E

fe(s)
∑

i=1

i+ βC(s)

=
1− β

2

∑

e∈E
(f2e (s) + fe(s)) + β

∑

e∈E
f2e (s)

=
1 + β

2
C(s) +

1− β

2

∑

e∈E
fe(s).

We therefore have

1 + β

2
C(s) ≤ Φβ(s) ≤ C(s).
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Let s be a strategy profile that minimizes Φβ, and let s∗ be an optimal strategy profile

that minimizes the social cost function C. Note that s is a pure Nash equilibrium of Gβ .

We have

C(s) ≤ 2

1 + β
Φβ(s) ≤ 2

1 + β
Φβ(s∗) ≤ 2

1 + β
C(s∗),

which proves the claim.

5.3 Linear Singleton Congestion Games

While the Price of Anarchy for general congestion games, somewhat counter-intuitively,

can increase with β, the situation is markedly different for the PoA of symmetric singleton

congestion games. We have already defined symmetric singleton games in Section 4.1.

Recall that in a symmetric singleton congestion game G = (N,E, {Si}i∈N , {ce}e∈E),

every player chooses one resource (also called edge) from E = {1, . . . ,m}, and all strategy

sets are identical, i.e., Si = E for every i. Again, we assume that the cost functions are

of the form ce(x) = aex+ be.

In this section, we analyze perhaps the two most fundamental cases with respect to

altruistic singleton congestion games: the uniform case, and the case when all altruism

levels are in {0, 1}, i.e., each player is either completely altruistic or completely selfish.

For both settings, we establish bounds on the pure PoA which improve with the total

altruism level in the system, i.e., decrease in β or the fraction of selfish players. This

stands in marked contrast to the bounds in the previous section, but is similar to the

result of Theorem 4.3.1 in the previous chapter.
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Theorem 5.3.1 The pure Price of Anarchy of uniformly β-altruistic linear symmetric

singleton congestion games is 4
3+β .

While in the previous section, we were able to derive tight bounds via smoothness

arguments, this is not possible for altruistic symmetric singleton congestion games. For

example, by the above theorem, the Price of Anarchy in the purely selfish setting is 4/3,

whereas Lücking et al. [62, Theorem 5.4] showed that the mixed price of anarchy for sym-

metric singleton congestion games with cost functions ce(x) = x is 1 + min{m−1
n , n−1

m }.

That is, for n = m, the mixed Price of Anarchy approaches 2 as n increases. The bound

given in Theorem 5.3.1 can therefore not be derived via a smoothness argument.

Theorem 5.3.1 implies that the pure PoA is 1 if all players are completely altruistic.

We remark that this continues to hold true for the more general class of semi-convex

cost functions (see Corollary 5.3.4 later).

Proof. [Theorem 5.3.1] Let s be a pure Nash equilibrium of Gβ and s∗ an optimal

strategy profile. We write fe = fe(s) and f∗e = fe(s
∗). For every edge e ∈ E, define

∆e = fe− f∗e . Let E+ and E− be the set of edges with ∆e > 0 and ∆e < 0, respectively.

Define ∆ =
∑

e∈E+ ∆e > 0. Because s and s∗ assign the same number of players to

edges, ∆ =
∑

e∈E+ ∆e = −∑e∈E− ∆e. If ∆ = 0, then the PoA is 1. Hence, we assume

that ∆ > 0, in which case both E+ and E− are non-empty.
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By definition, fe > f∗e ≥ 0 for every edge e ∈ E+. Because s is a Nash equilibrium

of Gβ, we have for every edge e ∈ E+ and ē ∈ E

(1− β)(aefe + be) + β((aex
2
e + befe) + (aēx

2
ē + bēfē))

≤ (1− β)(aē(fē + 1) + bē) + β
(

(ae(fe − 1)2 + be(fe − 1)) + (aē(fē + 1)2 + bē(fē + 1))
)

,

which is equivalent to

(1 + β)aefe + be − βae ≤ (1 + β)aēfē + bē + aē. (5.2)

We can use this relation in order to show that

∑

e∈E+

∆e((1 + β)aef
∗
e + be + ae∆e) +

∑

e∈E−

∆e((1 + β)aef
∗
e + be + βae∆e)

=
∑

e∈E+

∆e((1 + β)aefe + be − βae∆e) +
∑

e∈E−

∆e((1 + β)aefe + be − ae∆e)

≤
∑

e∈E+

∆e((1 + β)aefe + be − βae) +
∑

e∈E−

∆e((1 + β)aefe + be + ae)

≤ ∆(max
e∈E+

((1 + β)aefe + be − βae)− min
e∈E−

((1 + β)aefe + be + ae)) ≤ 0. (5.3)
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The first inequality follows from the definition of ∆e and because ∆e ≥ 1 for every

e ∈ E+ and ∆e ≤ −1 for every e ∈ E−; the last inequality follows from (5.2). Thus,

C(s) =
∑

e∈E
(f∗e +∆e)(ae(f

∗
e +∆e) + be)

=
∑

e∈E
(aex

∗2
e + bef

∗
e ) +

∑

e∈E+

∆e(2aef
∗
e + be + ae∆e) +

∑

e∈E−

∆e(2aef
∗
e + be + ae∆e)

≤ C(s∗) + (1− β)
∑

e∈E+

∆eaef
∗
e + (1− β)

∑

e∈E−

∆eae(f
∗
e +∆e)

≤ C(s∗) + 1
4(1− β)

∑

e∈E+

ae(f
∗
e +∆e)

2

≤ C(s∗) + 1
4(1− β)C(s).

The first inequality holds because of (5.3). The second inequality uses that xy ≤ 1
4 (x+

y)2 for arbitrary real numbers x, y and that ∆eaefe ≤ 0 for every e ∈ E−. Hence,

(1− 1−β
4 )C(s) ≤ C(s∗) so the pure Price of Anarchy is at most 4/(3 + β).

To see that this bound is tight, consider a β-altruistic congestion game with two

players and two edges E = {1, 2} with cost functions c1(x) = x and c2(x) = 2+β. If the

players use different edges, we obtain an optimal strategy profile of cost 3 + β. If both

players use edge 1, we obtain a Nash equilibrium of cost 4.

Next, we focus on a second very natural special case: when all altruism levels are

either 0 or 1. This kind of scenario, in which each player is either completely selfish

or completely altruistic, has some natural relationship with Stackelberg routing games

[80], and constitutes another class of examples where system performance improves with
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the total amount of altruism present. The results of Theorem 5.3.2 remind us of Theo-

rem 4.3.1. However, the bound loses a factor compared with the bound in Theorem 4.3.1.

We will see where the loss comes from in several places in the proof due to atomicity.

Theorem 5.3.2 The pure Price of Anarchy of β-altruistic linear symmetric singleton

congestion games and β ∈ {0, 1}n is at most 1+ n0
2n+n0

, where n0 is the number of selfish

players.

Let s be a pure Nash equilibrium of Gβ and s∗ an optimal strategy profile. Again,

let fe = fe(s) and f
∗
e = fe(s

∗). Based on the strategy profile s, we partition the edges in

E into sets E0, E1: E1 = {e ∈ E : ∃i ∈ N with βi = 1 and si = {e}} is the set of edges

having at least one altruistic player, while E0 = E \E1 is the set of edges that are used

exclusively by selfish players or not used at all. Let N1 and N0 refer to the respective

player sets that are assigned to E1 and E0. N1 may contain both altruistic and selfish

players, while N0 consists of selfish players only. Let k1 =
∑

e∈E1
fe and k0 = n − k1

denote the number of players in N1 and N0, respectively.

The high-level approach of our proof is as follows: we split the total cost C(s) of

the pure Nash equilibrium into C(s) = γC(s) + (1 − γ)C(s) for some γ ∈ [0, 1] such

that γC(s) =
∑

e∈E0
fece(fe) and (1 − γ)C(s) =

∑

e∈E1
fece(fe). We bound these two

contributions separately to show that

3
4γC(s) + (1− γ)C(s) ≤ C(s∗). (5.4)

The pure Price of Anarchy is therefore at most (34γ + (1 − γ))−1 = 4
4−γ . The bound of

1 + n0
2n+n0

then follows by deriving an upper bound on γ in Lemma 5.3.6.

88



www.manaraa.com

Lemma 5.3.3 Assume that the cost functions (ce)e∈E are semi-convex. Then there is

an optimal strategy profile s∗ such that fe ≤ f∗e for every edge e ∈ E1.

Proof. Let s∗ be an optimal strategy profile, and assume that f∗e < fe for some e ∈ E1.

Then there is some edge ē ∈ E with f∗ē > fē. Consider an altruistic player i ∈ N1 with

si = {e}. (Note that i must exist by the definition of E1.) Because s is a pure Nash

equilibrium, player i has no incentive to deviate from e to ē, i.e., C({ē}, s−i) ≥ C(s), or,

equivalently,

(fē + 1)cē(fē + 1)− fēcē(fē) ≥ fece(fe)− (fe − 1)ce(fe − 1). (5.5)

Since f∗e < fe and fē < f∗ē , the semi-convexity of the cost functions implies

(f∗e + 1)ce(f
∗
e + 1)− f∗e ce(f

∗
e ) ≤ fece(fe)− (fe − 1)ce(fe − 1) (5.6)

(fē + 1)cē(fē + 1)− fēcē(fē) ≤ f∗ē cē(f
∗
ē )− (f∗ē − 1)cē(f

∗
ē − 1). (5.7)

By combining 5.5, 5.6 and 5.7 and re-arranging terms, we obtain

(f∗e + 1)ce(f
∗
e + 1) + (f∗ē − 1)cē(f

∗
ē − 1) ≤ f∗e ce(f

∗
e ) + f∗ē cē(f

∗
ē ).

The above inequality implies that by moving a player j with s∗j = {ē} from ē to e, we

obtain a new strategy profile s′ = ({e}, s∗−j) of cost C(s′) ≤ C(s∗). (Note that j must

exist because f∗ē > fē ≥ 0.) Moreover, the number of players on e under the new strategy

profile s′ increased by one. We can therefore repeat the above argument (with s′ in place

of s∗) until we obtain an optimal strategy profile that satisfies the claim.

89



www.manaraa.com

Note that Lemma 5.3.3 implies that at least for singleton congestion games, entirely

altruistic players will ensure that Nash equilibria are optimal.

Corollary 5.3.4 The pure Price of Anarchy of 1-altruistic symmetric singleton conges-

tion games with semi-convex cost functions is 1.

Henceforth, we assume that s∗ is an optimal strategy profile that satisfies the state-

ment of Lemma 5.3.3.

Lemma 5.3.5 Define y∗ as y∗e = f∗e −fe ≥ 0 for every e ∈ E1, and y
∗
e = f∗e for all edges

e ∈ E0. Then,
∑

e∈E0
fece(fe) ≤ 4

3

∑

e∈E y
∗
ece(f

∗
e ).

Proof. Consider the game Ḡ induced by Gβ if all k1 players in N1 are fixed on the

edges in E1 according to s. Note that all remaining k0 = n−k1 players in N0 are selfish.

That is, Ḡ is a symmetric singleton congestion game with player set N0, edge set E and

cost functions (c̄e)e∈E , where c̄e(z) = ce(fe + z) if e ∈ E1 and c̄e(z) = ce(z) for e ∈ E0.

Let s̄ be the restriction of s to the players in N0, and define f̄ as f̄e = 0 for e ∈ E1 and

f̄e = fe for e ∈ E0. It is not hard to verify that s̄ is a pure Nash equilibrium of the game

Ḡ. Let s̄∗ be a socially optimum profile for Ḡ, and for each edge e, let f̄∗e be the total

number of players on e under s̄∗. Then,

∑

e∈E0

fece(fe) =
∑

e∈E
f̄ec̄e(f̄e)

≤ 4
3

∑

e∈E
f̄∗e c̄e(f̄

∗
e )

≤ 4
3

∑

e∈E
y∗e c̄e(y

∗
e) =

4
3

∑

e∈E
y∗ece(f

∗
e ),
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where the first inequality follows from Theorem 5.3.1 and the second inequality follows

from the optimality of f̄∗.

Notice that the following loses some factor compared with the upper bound of n0
n on

γ in the proof of Theorem 4.3.2.

Lemma 5.3.6 We have γ ≤ 2n0
n+n0

.

Proof. The claim follows directly from Theorem 5.3.1 if N1 = ∅. Assume that N1 6= ∅,

and let j ∈ N1 with sj = {ē}. Let C̄(s) =∑i∈N0
ci(s)/k0 be the average cost experienced

by players in N0. We first show cj(s) ≥ 1
2C̄(s). If N0 = ∅, then cj(s) ≥ 1

2 C̄(s) trivially

holds. Suppose thatN0 6= ∅, and let i ∈ N0 with si = {e}. Recall that i is selfish. Because

s is a Nash equilibrium, we have ci(s) = aefe+be ≤ aē(fē+1)+bē ≤ 2(aēfē+bē) = 2cj(s),

where we lose a factor 2 in the second inequality compared to a corresponding bound

in the proof of Theorem 4.3.2. By summing over all k0 selfish players in N0, we obtain

cj(s) ≥ 1
2C̄(s) and thus

∑

j∈N1
cj(s) ≥ 1

2k1C̄(s). We have

γ =

∑

i∈N0
ci(s)

∑

i∈N0
ci(s) +

∑

j∈N1
Cj(s)

≤ k0C̄(s)

k0C̄(s) + 1
2k1C̄(s)

=
2k0

n+ k0
≤ 2n0
n+ n0

,

where the last inequality follows because k0 ≤ n0.
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Proof. [Theorem 5.3.2] Using the above lemmas, we can show that the relation in 5.4

holds:

3
4γC(s) + (1− γ)C(s) = 3

4

∑

e∈E0

fece(fe) +
∑

e∈E1

fece(fe)

≤
∑

e∈E
y∗ece(f

∗
e ) +

∑

e∈E1

fece(fe) =
∑

e∈E
f∗e ce(f

∗
e ) +

∑

e∈E1

(fece(fe)− fece(f
∗
e ))

≤
∑

e∈E
f∗e ce(f

∗
e ) = C(s∗),

where the first inequality follows from Lemma 5.3.5, and the last inequality follows from

Lemma 5.3.3 and because cost functions are monotone increasing. We conclude that the

pure Price of Anarchy is at most (34γ+(1− γ))−1 = 4
4−γ . The stated bound now follows

from Lemma 5.3.6.

In general, this upper bound may not be tight. Nevertheless, we conjecture that the

gap can be very small if not tight. Observe that for non-uniform altruism with support

{0, 1} with n − 1 players being entirely altruistic and 1 player being entirely selfish,

Lemma 5.3.6 gives a bound on γ of 2
n+1 , but Theorem 5.3.2 still manages to give a pure

PoA bound of 2n+2
2n+1 , which is close to 1 when n is large. (We know that the pure PoA is

1 when every plater is entirely altruistic by Corollary 5.3.4.)

It is not hard to see that the above proof also goes through if every player has altruism

level either α or 1. In fact, the only change is in Lemma 5.3.5, where we can replace the

4
3 by 4

3+α .
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Corollary 5.3.7 The pure Price of Anarchy of altruistic linear symmetric singleton

congestion games with β ∈ {α, 1}n is at most 1+ (1−α)nα

2n+(1+α)nα
, where nα is the number of

players with altruism level α.

It would be very interesting to extend this type of results to arbitrary distribution

of altruism. We may face more technical difficulties since the allocation of players of

different altruism levels is related to the allocation of players at optimum in much more

complex way. We would like leave this part as future work.

5.4 Conclusions and Future Work

Intuitively, one would expect the Price of Anarchy of a game to improve when the

altruism level β gets closer to 1, but we have seen that this is not the case. Indeed,

there are important classes of games for which the robust Price of Anarchy turns out to

be tight, and actually gets worse as the altruism level of the players increases. The fact

that the Price of Anarchy does not necessarily get worse in all cases is exemplified by

our analysis of symmetric singleton congestion games.

The most immediate future directions include extending the results about non-

uniform altruism to arbitrary distribution of altruism and analyzing singleton congestion

games with more general functions than linear ones. While the PoA of such functions

increases (e.g., the PoA for polynomials increases exponentially in the degree for general

congestion games [23]), this also creates room for potentially larger reductions due to

altruism. For games where the smoothness argument cannot give tight bounds, would
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a refined smoothness argument like local smoothness in [85] work? For symmetric sin-

gleton congestion games, this seems unlikely, as the PoA bounds are already different

between pure and mixed Nash equilibria.

It is also worth trying to apply the smoothness argument or its refinements to analyze

the PoA for other dynamics in other classes of altruistic games. Furthermore, while the

existence of pure Nash equilibria has been shown for singleton and matroid congestion

games with player-specific latency functions [67, 1], the PoA (for pure Nash equilibria

or more general equilibrium concepts) has not yet been addressed. Studying the PoA in

such a general setting (in which our setting with altruism can be embedded) by either

smoothness-based techniques or other methods is undoubtedly intriguing.
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Chapter 6

Network Vaccination

We look at yet another class of network games, network vaccination games, in this chap-

ter. However, it has a totally different flavor from congestion (or routing) games: each

player actually resides on exactly one node in a social or computer network exclusively

and each node has a player, which is not the case for the setting of congestion games;

vaccinations or inoculation decisions can be made by node players to protect the social

or computer network from being affected by outbreaks of epidemics or computer viruses

in the network. However, every node player’s selfish decision may not agree with the

benefit of the society. For example, vaccination of a node may be a suboptimal decision

for this node, but may help protect a large part of the network and therefore reduce the

social cost. We will see that here the impact of altruism makes a difference from without

altruism even for the existence of pure Nash equilibria. The results of this chapter are

based on the paper [19] where, besides the results presented here, there are optimization

results due to M. David.
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6.1 Preliminaries

Recent epidemics of the Avian Flu and Swine Flu, among others, have reinforced the

dramatic vulnerability of our society to outbreaks of epidemic diseases. Similarly, recent

worms and viruses (such as Storm or Conficker) have shown us how severe consequences

can be for massive infections of nodes in a computer network. Protecting social and

computer networks from such outbreaks is a task of paramount social and economic

importance.

Strategies for protecting a network fall roughly into two categories: preventive and

reactive. Reactive strategies attempt to isolate nodes of the network (individuals or

machines) once they have been diagnosed with an infection. Prophylactic vaccinations or

inoculations protect nodes so that they will in the future not be affected by an outbreak1.

Here, we focus on preventive strategies, i.e., the decisions which nodes in a network should

be vaccinated.

We first describe the basic model of Aspnes et al. [4] with generalizations, allowing

the vaccination cost, infection cost, and probability of initial infection outbreak to vary

among nodes, and then extend it to include a notion of altruism. We show that with

altruism, there are instances without pure Nash Equilibria. We therefore propose a

notion of “opting out” from vaccinations, and define the Price of Opting Out.

1In practice, the protection may not be perfect; considering inoculations which succeed only with a
certain probability is an interesting direction for future work.
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6.1.1 Basic Model

The social or computer network is represented by an undirected graph G = (V,E) of n

nodes, each of which can either be vaccinated or unvaccinated. The cost for vaccination

is Cv if node v chooses to vaccinate. Once all vaccination decisions are made, exactly one

node becomes infected; the infection probability of v is pv where
∑

v∈V pv = 1. From

that node, the infection spreads along edges of the graph to all unvaccinated nodes.

However, no vaccinated nodes can become infected or pass on the infection. Let S be

the set of vaccinated nodes, and Γ1, . . . ,Γk the connected components of G \ S, which

means removing vaccinated nodes. If node v is unvaccinated and in component Γi, its

probability of infection is
∑

u∈Γi
pu. The cost for becoming infected is Lv, leading to an

expected cost of Lv ·
∑

u∈Γi
pu if node v chooses to stay unvaccinated.

Since each node v in component Γi has expected cost Lv ·
∑

u∈Γi
pu, the total social

cost with set S vaccinating is

C(S) =
∑

v∈S
Cv +

∑

i

∑

u∈Γi

pu
∑

v∈Γi

Lv. (6.1)

We use S∗ to denote the optimum set of nodes to vaccinate, i.e., the set minimizing

C(S).

While it is socially optimal to minimize C(S), individual nodes’ preferences may not

align with this objective. An individual node will choose the strategy (be vaccinated or
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not be vaccinated) based only on its own tradeoff. That is, a selfish node will vaccinate

if Cv ≤ Lv ·
∑

u∈Γi
pu, and not vaccinate otherwise. Let

cv(S) =















Cv if v ∈ S

Lv ·
∑

u∈Γi
pu if v /∈ S, v ∈ Γi

(6.2)

denote the cost that node v experiences based on all players’ vaccination decisions. Since

players will act selfishly, this scenario leads naturally to a game termed the inoculation

game.

Aspnes et al. [4] already established that there always is a pure Nash Equilibrium

in this setting and showed a linear lower bound on the Price of Anarchy and Price of

Stability.

Proposition 6.1.1 Both the Price of Anarchy and the Price of Stability can be Θ(n).

Proof. A simple example is a star graph with Cv = C, Lv = L for every node v, and

C = L + ǫ. In the unique Nash Equilibrium, no player vaccinates, while the socially

optimal solution vaccinates the center node of the star. The respective social costs are

nL and C + (1− 1/n) · L.

6.1.2 Altruism

The basic model introduced above assumes that individuals are completely selfish and

do not take into account the effects of their actions on other nodes. We therefore study

the inoculation game by instantiating our general model of partial altruism, formally

defined in Section 2.3. Again, the uniform altruism level of the nodes is denoted by β.
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Definition 6.1.2 (Perceived Cost) The perceived cost of a β-altruistic node is the

convex combination

c(β)v (S) = (1− β) · cv(S) + β · C(S). (6.3)

Thus, the perceived cost of a partially altruistic node is the convex combination of the

individual cost (selfish part) and the social cost (altruistic part). As usual, a node will

choose the strategy (vaccinate or do not vaccinate) which minimizes the perceived cost.

The tradeoff is characterized by the following proposition, which can be obtained by

simple rearranging.

Proposition 6.1.3 Let S ⊆ V \ {v} be the set of other nodes vaccinating, and Γ the

component of G \ S containing v. Let Γ1, . . . ,Γk be the subcomponents of Γ resulting

from removing v from Γ. Then, v will prefer to be vaccinated if and only if

Cv ≤ (1− β)
∑

u∈Γ
pu · Lv + β · (

∑

u∈Γ
pu
∑

v∈Γ
Lv −

∑

i

∑

u∈Γi

pu
∑

v∈Γi

Lv).

Remark 6.1.4 Our definition of perceived cost is similar to the notion of friendship

used by Meier et al. [66]. In their case, the altruistic part does not consider the cost of

all nodes, but just that of the neighbors of v in G. Thus, they model more the incentives

due to friendship in a social network, while our model captures more a general notion of

altruism toward all others.

Proposition 6.1.5 There is an instance such that for every β, the Price of Anarchy is

Θ(n).
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Proof. For the complete bipartite graph K2,n−2, if Cv = C, Lv = L for every node v,

and C = L+ ǫ, the state in which no node is vaccinated is a Nash Equilibrium regardless

of the value of β. The calculation of the ratio is the same as in Proposition 6.1.1. (Notice

that for β large enough, the state with both nodes on the left side vaccinated is also a

Nash Equilibrium, and the Price of Stability is thus smaller than Θ(n).)

While the inoculation game with selfish players is a potential game and thus pos-

sesses pure Nash Equilibria [4], the introduction of partial altruism changes the situation

significantly.

Proposition 6.1.6 There exist instances of the inoculation game with partial altruism

in which there is no pure Nash Equilibrium.

u v

859578

30422

150000

10000

10000

10000

.

.

.

14

Figure 6.1: A graph without Nash Equilibrium

Proof. Consider the graph in Figure 6.1 with two nodes u, v and cliques of the indicated

sizes. Whenever an edge is shown, there is an edge from u (or v) to all nodes in

the corresponding clique. On the left, there are 14 cliques of size 10000 each. Thus,
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n = 14 ·10000+30422+859578+150000+1+1 = 1180002, and for all nodes, we set the

infection cost to be L = 1 and the vaccination cost to be C = 4.8015. The altruism value

is β = 0.0000145. We calculate C · n = 4.8015 · 1180002 = 5665779.603 for convenience.

The following calculations will show that

1. no node besides u or v ever wants to be vaccinated,

2. v wants to be vaccinated if and only if u is vaccinated, and

3. u wants to be vaccinated if and only if v is not vaccinated.

Thus, this instance encodes a “Matching Pennies” type of game and has no pure Nash

Equilibrium.

1. This can be shown by using Proposition 6.1.3 for nodes other than u and v. If

both u and v are vaccinated, any node (except u and v) inside a clique wants to

stay unvaccinated:

5665779.603 ≥ (1− 0.0000145) · 10000 + 0.0000145 · (100002 − 99992 − 02)

= 100000.14499;

5665779.603 ≥ (1− 0.0000145) · 150000 + 0.0000145 · (1500002 − 1499992 − 02)

= 150002.175;

5665779.603 ≥ (1− 0.0000145) · 30422 + 0.0000145 · (304222 − 304212 − 02)

= 30422.4411;

5665779.603 ≥ (1− 0.0000145) · 859578 + 0.0000145 · (8595782 − 8595772 − 02)

= 859590.4638;
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If u is unvaccinated and v is vaccinated, any node (except u and v) inside the

connected component merged by u wants to stay unvaccinated:

5665779.603 ≥ (1− 0.0000145) · (14 · 10000 + 30422 + 859578 + 1)

+0.0000145 · ((14 · 10000 + 30422 + 859578 + 1)2

−(14 · 10000 + 30422 + 859578)2 − 02)

= 1030015.935;

If both u and v are unvaccinated, any node (except u and v) inside the connected

component merged by u and v wants to stay unvaccinated:

5665779.603 ≥ (1− 0.0000145) · (14 · 10000 + 30422 + 859578 + 1 + 150000 + 1)

+0.0000145 · ((14 · 10000 + 30422 + 859578 + 1 + 150000 + 1)2

−(14 · 10000 + 30422 + 859578 + 1 + 150000)2 − 02)

= 1180019.11;

If u is vaccinated and v is unvaccinated, any node (except u and v) inside the

connected component merged by v wants to stay unvaccinated:

5665779.603 ≥ (1− 0.0000145) · (30422 + 859578 + 150000 + 1)

+0.0000145 · ((30422 + 859578 + 150000 + 1)2

−(30422 + 859578 + 150000)2 − 02)

= 1040016.08;
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2. By using Proposition 6.1.3, we have the following conditions for v.

If u is unvaccinated, v wants to get unvaccinated:

5665779.603 ≥ (1− 0.0000145) · (14 · 10000 + 30422 + 859578 + 1 + 150000 + 1)

+0.0000145 · ((14 · 10000 + 30422 + 859578 + 1 + 150000 + 1)2

−(14 · 10000 + 30422 + 859578 + 1)2 − 1500002)

= 5660523.46. (6.4)

If u is vaccinated, v wants to get vaccinated:

5665779.603 ≤ (1− 0.0000145) · (30442 + 859578 + 150000 + 1)

+β((30442 + 859578 + 150000 + 1)2 − 304222 − 8595782 − 1500002)

= 5669868.455. (6.5)

We thus conclude that 2. can be shown by using (6.4) and (6.5).

3. By using Proposition 6.1.3, we have the following conditions for u.

If v is vaccinated, then u wants to get unvaccinated:

5665779.603 ≥ (1− 0.0000145) · (14 · 10000 + 30422 + 859578 + 1)

+0.0000145 · ((14 · 10000 + 30422 + 859578 + 1)2 − 14 · 100002

−304222 − 8595782)

= 5665668.31. (6.6)
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If v is unvaccinated, u wants to get vaccinated:

5665779.603 ≤ (1− 0.0000145) · (30442 + 859578 + 150000 + 1 + 14 · 10000 + 1)

+0.0000145 · ((30442 + 859578 + 150000 + 1 + 14 · 10000 + 1)2

−(30442 + 859578 + 150000 + 1)2 − 14 · 100002)

= 5666323.17. (6.7)

We thus conclude that 3. can be shown by using 6.6 and 6.7.

6.1.3 Opting Out

In light of Proposition 6.1.6, the standard notion of the Price of Stability [2] is not defined

for pure Nash Equilibria in our game. Mixed Nash Equilibria are not a natural solution

concept in inoculation games, because the decision of whether or not to be vaccinated

tends to be permanent or very long-term. Nevertheless, it is of interest to analyze the

effect that nodes’ autonomy with respect to vaccination decisions has on the social cost.

Since the main concern with individual autonomy is undervaccination of the network

(see the discussion at the end of Section 6.2), we consider a natural model of opting

out. A benevolent authority suggests a set of nodes S0 to vaccinate, such as the optimal

solution S∗ or an approximation. Subsequently, nodes that were targeted for vaccination

have the option to override this decision, e.g., by not showing up for their vaccination.

Notice that they cannot opt back in once opting out. However, we do not allow nodes
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v /∈ S0 to override the decision and become vaccinated instead. Since the resulting

dynamic is monotone in the number of vaccinated nodes, it will always converge to a

final set of vaccinated nodes. However, this set of nodes may depend on the order in

which nodes opt out.

For a starting set S0, we define R(S0) to be the collection of all node sets S such that

the opting-out dynamic, starting from S0, will eventually reach S. Formally, we define

R(S0) as follows:

Definition 6.1.7 (1) S0 ∈ R(S0), and (2) If S ∈ R(S0), and v ∈ S prefers being

unvaccinated, given that all nodes in S \ {v} are vaccinated, then S \ {v} ∈ R(S0).

Note that we do not require each S ∈ R(S0) itself to be stable; we also include in

R(S0) sets such that in later steps, further nodes will opt out. We then define the Price

of Opting Out to be the worst-case ratio between the social cost of any set S ∈ R(S∗)

and the social cost at S∗. Thus, the Price of Opting Out captures the increase in cost

due to giving nodes the authority to opt out of vaccinations.

Our notion of the Price of Opting Out bears some similarity with the “Price of

Sinking” defined by Goemans et al. [43] in the context of routing games and valid util-

ity games. However, they considered the strongly connected sink component of the

best-response graph, and considered bounds on the expected cost under the stationary

distribution of a random walk. Our goal is to obtain bounds on each reachable state.

Naturally, it is a question for future work to consider not only opt-out dynamics, but

states reached by arbitrary sequences of best responses.
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6.2 The Price of Opting Out

In this section, we bound the price of opting out, by analyzing any state that can be

reached from an initially vaccinated set S0 by a sequence of opt-out moves. Our main

theorem is the following:

Theorem 6.2.1 If S is obtained from S0 by a sequence of opt-out moves, then C(S) ≤

1
β · C(S0).

Theorem 6.2.1 thus in a sense captures the Price of Limited Autonomy: letting

individuals choose not to be vaccinated when an optimal (or near-optimal) solution

prescribes that they should be.

Proof. Let {v1, . . . , vℓ} = S0 \ S be the set of all nodes who have opted out of being

vaccinated, in the order in which they opted out. Let St = S ∪ {vt+1, . . . , vℓ} be the set

of nodes still vaccinated after t nodes have opted out, and Γ
(t)
1 , . . . ,Γ

(t)
kt

the connected

components of G \ St. In particular, Γ
(0)
1 , . . . ,Γ

(0)
k0

are the connected components of the

initial vaccinated set S0. Define

Φ(t) :=
∑

v∈St
Cv + β ·∑i

∑

u∈Γ(t)
i

pu
∑

v∈Γ(t)
i

Lv.

We will prove by induction that for all t, we have

Φ(t) ≤ C(S0). (6.8)
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The base case t = 0 holds because β ≤ 1, simply substituting the definition of social

cost. Consider step t in which node v = vt decides to opt out of vaccinating. By ceasing

to be vaccinated, v merges one or more components Γ
(t)
i for i ∈ M , forming one new

component Γ
(t+1)
j . Then,

Φ(t+ 1) = Φ(t)− Cv + β · (∑
u∈Γ(t+1)

j

pu
∑

v∈Γ(t+1)
j

Lv

− ∑

i∈M
∑

u∈Γ(t)
i

pu
∑

v∈Γ(t)
i

Lv).

By Proposition 6.1.3, the fact that v chooses to opt out of vaccinating implies that

Cv ≥ (1− β)
∑

u∈Γ(t+1)
j

pu · Lv

+β · (∑
u∈Γ(t+1)

j

pu
∑

v∈Γ(t+1)
j

Lv −
∑

i∈M
∑

u∈Γ(t)
i

pu
∑

v∈Γ(t)
i

Lv)

≥ β · (∑
u∈Γ(t+1)

j

pu
∑

v∈Γ(t+1)
j

Lv −
∑

i∈M
∑

u∈Γ(t)
i

pu
∑

v∈Γ(t)
i

Lv).

Substituting this inequality into Φ(t+1) shows that Φ(t+1) ≤ Φ(t), and the claim now

follows by induction.

After all vt have opted out, the total social cost is

C(S) =
∑

v∈S Cv +
∑

i

∑

u∈Γ(ℓ)
i

pu
∑

v∈Γ(ℓ)
i

Lv

≤ 1
β · Φ(ℓ)

≤ 1
β · C(S0),

where the last step followed from the claim we proved by induction.

By applying Theorem 6.2.1 to the optimum set S∗, we obtain the following corollary:

Corollary 6.2.2 The Price of Opting Out is at most 1/β.
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Notice, however, that Theorem 6.2.1 is more general. In particular, it applies to

approximately optimal starting sets S0. While computing S∗ itself is NP-complete [4],

we have shown how to find an O(log n) approximation to the social cost [19]. Theorem

6.2.1 then guarantees that if we start with the set S0 vaccinated, after allowing the nodes

to opt out, the social cost will be within a factor O(1/β · log n) of optimal, and stable to

further opting out of nodes.

We also remark that Theorem 6.2.1 is tight.

Proposition 6.2.3 There are instances with altruism β where the Price of Opting Out

is 1/β.

Proof. Let β > 0 be arbitrary, and consider a star graph with n nodes. Let Lv = 1 and

Cv = 1+β(n+1/n−2) for every node v. Then, the inequality (1+β(n+1/n−2)) ·n ≥

(1− β)n2 + β(n2 − (n− 1) · 12) for the central node shows that opting out always leads

to a solution with no nodes vaccinated (none of the other nodes want to get vaccinated

since vaccination by any of them cannot break up the star), for a total cost of n. On the

other hand, the optimum solution vaccinates the center node of the star, giving a total

cost of 1 + β(n+ 1/n − 2) + 1− 1/n = βn+O(1). As n→ ∞, the Price of Opting Out

then converges to 1/β.

Instead of the Price of Opting Out, one could study the Price of Opting In. There are

two reasons why this is not as natural an approach: (1) It is less realistic that one could

force individuals to undergo vaccinations, and (2) The Price of Opting In is always 1.

The inequality in Proposition 6.1.3 and some calculation show that if β-altruistic nodes

prefer to switch their status to “vaccinated”, the social cost always decreases.
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Naturally, the most general dynamic one would want to study would combine opting

in and opting out, considering any sequence of best-response steps. Ideally, one would

want to prove a 1/β bound for all states reachable by such best responses. However,

analyzing a full best-response dynamic in this sense appears to be quite challenging, and

it is possible that it reaches states much less efficient than 1/β · C(S∗).

6.3 Conclusions and Future Work

In this chapter, we presented bounds on the Price of Opting Out for a network inocula-

tion game, in the presence of altruism. We believe that the Price of Opting Out result

in particular has interesting consequences in terms of policy: it suggests that if individ-

uals have the freedom to opt out of suggested vaccinations, then neither coordination

of strategies nor socialization of costs alone will lead to an efficient outcome, yet the

combination of both gives outcomes of much lower societal cost.

Naturally, many questions remain for future work. Most directly, our Price of Opt-

ing Out result should be generalized (if possible) to a more general notion of autonomy.

Since pure Nash Equilibria may not exist in general, a natural (and very strong) result

would be to show that all states reachable from the optimum by any sequence of indi-

vidual best responses have the same cost bound. Such sequences could include arbitrary

choices to vaccinate or not to vaccinate matching nodes’ preferences. Such a result would

significantly strengthen the policy implications of our results, since in most scenarios,

individuals do have the freedom to decide whether or not they want to be vaccinated.

Furthermore, while mixed Nash Equilibria are not an ideal solution concept for the type
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of game we study here, it would nevertheless be interesting from a theory point of view

what they look like, and how efficient or inefficient they are.

Stronger bounds could also be obtained under additional assumptions about the

network structure. For instance, most social networks have bounded degrees. Indeed,

we can show that even in the basic model of Aspnes et al. without altruism, the Price of

Anarchy is bounded by
√
n∆ if all degrees are bounded by ∆ (whereas the general bound

is Θ(n)). The exact impact on the Price of Opting Out or a generalization constitutes

an interesting direction for future work. Similarly, it would be interesting to study the

impact of other graph parameters.

More generally, the model proposed by Aspnes et al. (which we study here) is some-

what simplistic. It assumes that each edge of the graph will deterministically transmit

the infection, and that each vaccination will deterministically protect the node. As-

signing (known) probabilities to both types of events would be much more natural, but

most likely lead to a significantly more difficult optimization problem. For example, we

are given a graph and told who is vaccinated; each edge transmits the infection with

probability p 6= 0, 1. Then, computing the expected number of infected nodes from a

uniformly random outbreak might be ♯P -hard. Since evaluating the objective function

might be already hard, things will not be better for the optimization problem.

Finally, our analysis assumes that all nodes know the full topology of the network.

This is certainly not true in social networks, and it would be interesting to formulate a

natural model of partial knowledge, and analyze its impact on the behavior of individuals

in the network. Different nodes may have knowledge of different parts of the network,

creating different “views” about connected components whose sizes may affect their
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decisions. Then, the existence of equilibria is not even clear any more. Let alone the

PoA and PoS.
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Chapter 7

Auctions

There is no concept of networks in the setting of the standard auction theory. In this

chapter, we are going to see how the outcome of an auction is affected by being situated

in an economic or social network. We just focus on the most basic auctions, single-item

auctions where the auctioneer is selling an item to n bidders. In a standard auction (e.g.,

first- and second-price auctions), there is no concept of relations among bidders. The

purpose here is not to change or design auction mechanisms but to see how equilibrium

bidding strategies in a first- or second-price single-item auction change due to bidders

having positive or negative relations that form an economic or social network.

7.1 Preliminaries

The traditional view of auctions posits that bidders only care if they win the item(s), and

at what price. The utility of bidders not winning the auction is 0, regardless of the actual

outcome. If the auction is conducted among perfectly rational strangers, the items are

solely for resale, and no future competitive advantage is gained by winning an auction

cheaply, this assumption is quite accurate. However, in many realistic scenarios, the
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bidders are embedded in social and economic networks, which will affect their perception

of an auction’s outcome. For instance, previous social or economic interactions may

have led to positive or negative relationships between bidders. These in turn will cause

different perceptions of the auction to a bidder, depending on which competitor wins, and

at what price. A similar case can be made for potential future economic interactions: if

two bidders are likely future collaborators, then one would derive benefit from the other’s

winning the auction; conversely, if they are likely future competitors, then an outcome

advantageous to one is intrinsically threatening to the other.

These observations for auctions motivate our study of auctions in which the utility of

losers is not always 0, but rather depends on the identity of the winner, and the utility

the winner derives from the auction.

We assume throughout that we have n bidders with valuations vi. Bids are denoted

by bi. We study auctions in which the auctioneer is trying to sell an item, and consider

first- and second-price auctions Both for first- and second-price auctions, the auction

mechanism selects as winner a bidder i maximizing bi (breaking ties arbitrarily, but

consistently). Let w be this winner, and s ∈ argmaxi 6=w bi be a bidder making the

second-highest bid. Then, the threshold bid for the winning bidder w is τw = bs.

To distinguish between the utility derived directly from winning in the auction, and

the utility derived indirectly from other bidders’ utilities due to spite or altruism, we call

the former subutility, and the latter perceived utility. We can see that this also falls under

our general model of altruism and spite. The general definition of Chapter 2 specializes

to the following (perceived) utilities for bidder i.
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1. Second-price auction for selling an item:

ui =















βi,i · (vi − τi) for i = w

βi,w · (vw − τw) for i 6= w

(7.1)

2. First-price auction for selling an item:

ui =















βi,i · (vi − bi) for i = w

βi,w · (vw − bw) for i 6= w

(7.2)

Remark 7.1.1 The definition given here coincides with the one used by Brandt et

al. [14]. The definition of Morgan et al. [69] differs only in that it omits the factor

βi,i in front of the subutility from himself.

The larger |βi,j |, the more important the winning or losing of other bidders becomes

to i. (Notice that we do not recursively consider the utility a bidder derives from another

bidder’s perceived utility. Such systems of utility functions studied by Bergstrom [9] have

been discussed in Section 2.3.1.)

7.2 Bayesian Auctions

We study auctions in which the auctioneer is selling a single item to spiteful and altruistic

bidders. Each bidder’s value is private, but drawn from the same distribution, F , which

is common knowledge among all bidders. Bidders are assumed to maximize expected

utility.
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We would like to derive general Nash Equilibrium conditions for arbitrary distribu-

tions F on [0, 1] and spite levels, for both first- and second-price auctions. Since these

conditions are too complicated to solve in general, we focus on two special cases:

1. Networks in which each bidder has the same number d of acquaintances, and feels

the same spite/altruism level β toward all of his d neighbors. Thus, we have a

social network in which each node has outdegree d, and all bidders have uniform

spite/altruism. For this case, we analyze both first- and second-price auctions

under arbitrary distributions F of valuations. We show that the revenue of the

second-price auction dominates the first-price auction for β < 0, while the domi-

nation is reversed for β > 0.

2. First-price auctions with triangular altruism matrices with non-negative entries or

block spite/altruism matrices B. Bidders’ valuations are drawn uniformly from the

interval [0, 1]. We present a (non-symmetric) Nash equilibrium.

Throughout, we identify the distribution F over [0, 1] with its cumulative distribution

function (cdf), and use f = F ′ to denote its density function. Bidder i’s bidding function

is bi: When bidder i has valuation v, she will bid bi(v). We denote by b−1
i the inverse

function of the bidding function, i.e., b−1
i (b) is the valuation v such that bidder i with

valuation v would bid b.1

We begin by deriving equilibrium conditions for first- and second-price auctions in

the fully general setting:

1We are thus implicitly assuming that the bidding functions are strictly increasing and continuous.
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Lemma 7.2.1 Assume that all valuation are drawn independently from the same distri-

bution F over [0, 1].

1. Nash Equilibria of first-price auctions satisfy the following system of differential

equations:

∑

j 6=i βi,i(v − bi(v)) ·
f(b−1

j (bi(v)))·b−1
j

′

(bi(v))

F (b−1
j (bi(v)))

+
∑

j 6=i,bj(1)≥bi(v)

(

βi,jbi(v) − βi,jb
−1
j (bi(v))

)

· f(b−1
j

(bi(v)))·b−1
j

′

(bi(v))

F (b−1
j (bi(v)))

= βi,i.

(7.3)

2. Nash Equilibria of second-price auctions satisfy the following system of differential

equations:

βi,i ·
∑

j 6=i

f(b−1
j (bi(v))·b−1

j

′

(bi(v)))

F (b−1
j (bi(v)))

· (v − bi(v))

+
∑

j 6=i
βi,j

F (b−1
j (bi(v)))

·
(

(1− F (b−1
j (bi(v)))) · bi(v) ·

∑

k 6=i,j,bk(1)≥bi(v)
f(b−1

k
(bi(v)))·b−1

k

′

(bi(v))

F (b−1
k

(bi(v)))

+ bi(v) ·
∑

ℓ 6=i f(b
−1
ℓ (bi(v))) · b−1

ℓ

′
(bi(v))

− bi(v) ·
∑

k 6=i,j
f(b−1

k
(bi(v)))·b−1

k

′

(bi(v))

F (b−1
k

(bi(v)))
− 1
)

+
∑

j 6=i,bj(1)≥bi(v)
βi,j

F (b−1
j (bi(v)))

·
(

− b−1
j (bi(v)) · f(b−1

j (bi(v))) · b−1
j

′
(bi(v))

)

= −∑j 6=i βi,j

(7.4)
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Proof. We first consider the case of first-price auctions. Denote by Ej = [bj(vj) >

bk(vk) for all k 6= j] the event that bidder j wins the auction. Using linearity of expec-

tations, the expected utility of bidder i with valuation v is

Prob[Ei] · βi,i · (v − bi(v)) +
∑

j 6=iProb[Ej] · βi,j ·
(

E [vj | Ej ]− E [bj(vj) | Ej ]
)

= βi,i · (v − bi(v)) ·
∏

j 6=i F (b
−1
j (bi(v)))

+
∑

j 6=i βi,j ·
(

∫ 1
min(1,b−1

j (bi(v)))
xf(x) ·∏k 6=i,j F (b

−1
k (bj(x)))dx

−
∫ bj(1)

min(bj(1),bi(v))
yf(b−1

j (y))b−1
j

′
(y) ·∏k 6=i,j F (b

−1
k (y))dy

)

.

At Nash Equilibrium, the bidding strategy bi must be optimal. Thus, we take a derivative

with respect to bi(v) and set it to 0, obtaining

βi,i ·
(

∑

j 6=i f(b
−1
j (bi(v))) · b−1

j
′
(bi(v)) · (v − bi(v)) ·

∏

k 6=i,j F (b
−1
k (bi(v)))

−∏j 6=i F (b
−1
j (bi(v)))

)

+
∑

j 6=i,bj(1)≥bi(v)
βi,j ·

(

− b−1
j (bi(v)) · f(b−1

j (bi(v))) · b−1
j

′
(bi(v)) ·

∏

k 6=i,j F (b
−1
k (bi(v)))

+ bi(v) · f(b−1
j (bi(v))) · b−1

j
′
(bi(v)) ·

∏

k 6=i,j F (b
−1
k (bi(v)))

)

= 0.

Using that

∏

k 6=i,j F (b
−1
k (bi(v))) =

∏
k F (b−1

k
(bi(v)))

F (b−1
j (bi(v)))·F (v)

and

∏

j 6=i F (b
−1
j (bi(v))) =

∏
k F (b−1

k
(bi(v)))

F (v) ,

(7.5)

rearranging and canceling yields the condition claimed in the lemma.
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For second-price auctions, in addition to Ej, we use Dj,k = [bj(vj) > bk(vk) >

bℓ(vℓ) for all ℓ 6= j, k] for the event that bidder j wins the auction, and bidder k has

the second-highest bid. The expected utility of bidder i with valuation v bidding bi(v)

is

βi,i · (Prob[Ei] · v −
∑

j 6=iE [bj(vj) | Di,j] · Prob[Di,j])

+
∑

j 6=i βi,j ·
(

E [vj | Ej] · Prob[Ej]

− bi(v) · Prob[Dj,i]−
∑

k 6=i,j E [bk(vk) | Dj,k] · Prob[Dj,k]
)

= βi,i ·
∏

j 6=i F (b
−1
j (bi(v))) ·

(

v −∑j 6=i

∫ bi(v)
bj(0)

x · f(b−1
j (x)) · b−1

j
′
(x) ·∏ℓ 6=i,j F (b

−1
ℓ (x))dx

)

+
∑

j 6=i βi,j ·
(

∫ 1
min(1,b−1

j (bi(v)))
x · f(x) ·∏k 6=i,j F (b

−1
k (bj(x)))dx

− bi(v) · (1− F (b−1
j (v))) ·∏k 6=i,j F (b

−1
k (bi(v)))

−∑k 6=i,j

∫ bk(1)
min(bk(1),bi(v))

x · f(b−1
k (x)) · b−1

k

′
(x) · (1− F (b−1

j (x))) ·∏ℓ 6=i,j,k F (b
−1
ℓ (x))dx

)

.

Again, we take a derivative with respect to bi(v) and set it to 0.

Simplifying the resulting equation using

∏

ℓ 6=i,j,k F (b
−1
ℓ (bi(v))) =

∏
ℓ F (b−1

ℓ
(bi(v)))

F (b−1
k

(bi(v)))F (b−1
j (bi(v)))F (v)

as well as the two identities (7.5), after rearranging, we get the condition as claimed in

the lemma.

In general, the system of differential equations (7.3) does not admit a direct solution,

due to the interplay between inverses of bidding functions. We therefore next focus on

special cases where the particular form of bidding functions allows us to simplify the

differential equations further.
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7.2.1 Regular Social Networks

As the first special case, we consider regular social networks, i.e., those in which each

node has the same out-degree d. Furthermore, we assume that for each pair of bidders

(i, j) with a directed edge from i to j, the spite level is the same, βi,j = β for all i, j with

an edge, and let βi,i = α > 0.

It turns out that under this scenario, both the first-price and second-price auction

have a symmetric Bayesian Nash Equilibrium, i.e., a Nash Equilibrium in which all

bidding functions are the same, bi = b for all i.

First-Price Auctions

Theorem 7.2.2 There exists a Bayesian Nash equilibrium for first-price auctions in

which all bidders bid b(v) = E [X | X < v], where X is a random variable with cdf

F (x)n−1−dβ/α.

Proof. Substituting the symmetric guess bi = b for all i into the the system of dif-

ferential equations (7.3), we can simplify the system by using that b−1
j (bi(v)) = v,

b−1
j

′
(bi(v)) =

1
b′(v) , and bj(1) ≥ bi(v) for all i, j into

∑

j 6=i

(

βi,i(v − b(v)) + βi,jb(v) − βi,jv
)

· f(v)
F (v)b′(v) = βi,i,

and, using the network structure, simplify further to

(

((n − 1)α − dβ) · (v − b(v))
)

· f(v)
F (v)b′(v) = α.
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Solving for b(v) gives us b(v) = v − 1
n−1−dβ/α · F (v)b′(v)

f(v) . This differential equation has

solution

b(v) = F (v)−(n−1−dβ/α) ·
∫ v
0 x · (n− 1− dβ/α) · F (x)n−2−dβ/αf(x)dx. (7.6)

Thus, we have proved the theorem.

Note that the bidding function can be interpreted as the expectation of the highest

of (n − 1) − βd
α private values below v, in spite of the fact that (n − 1) − βd

α may be

a fractional number. Notice that this theorem does not characterize all equilibria, and

indeed, it seems very likely that this auction also possesses asymmetric Nash Equilibria.

Substituting the uniform distribution over [0, 1] for every bidder’s valuation, we ob-

tain the following corollary:

Corollary 7.2.3 There is a Bayesian Nash equilibrium for first-price auctions with all

valuations uniformly distributed in [0, 1] in which all bidders bid b(v) = (1− α
n·α−βd) · v.

In particular, when d = n− 1, Theorem 7.2.2 and Corollary 7.2.3 recover the results

of Brandt et al. [14] who showed that b(v) = n−1
n+β · v for uniform spite levels (with

α = 1 + β), and those of Morgan et al. [69] (with α = 1).

Second-Price Auctions

We next turn our attention to second-price auctions, and prove the following theorem.
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Theorem 7.2.4 There is a Bayesian Nash equilibrium for the second-price auction with

regular friendship graphs in which all bidders bid b(v) = E [X | X > v], where X is a

random variable with cdf

1− (1− F (x))1+
(n−1)α

βd .

Proof. We again substitute the symmetric guess bi = b for all i into the system (7.4)

and simplify by using that b−1
j (bi(v)) = v, b−1

j
′
(bi(v)) =

1
b′(v) , and bj(1) ≥ bi(v) for all i, j,

canceling bi(v)·
∑

k 6=i,j,bk(1)≥bi(v)
f(b−1

k
(bi(v)))·b−1

k

′

(bi(v))

F (b−1
k

(bi(v)))
and−bi(v)·

∑

k 6=i,j
f(b−1

k
(bi(v)))·b−1

k

′

(bi(v))

F (b−1
k

(bi(v)))

since bk(1) ≥ bi(v) for k 6= i, j to obtain

βi,i ·
∑

j 6=i
f(v)

F (v)b′(v) · (v − b(v))

+
∑

j 6=i
βi,j

F (v) ·
(

− b(v)
∑

k 6=i,j
f(v)
b′(v) + b(v)

∑

ℓ 6=i
f(v)
b′(v) − v f(v)

b′(v) − 1
)

= −∑j 6=i βi,j .

Noting that the two sums inside the parentheses almost cancel out, i.e., −∑k 6=i,j
f(v)
b′(v)+

∑

ℓ 6=i
f(v)
b′(v) =

f(v)
b′(v) , pulling constant terms f(v)

F (v)b′(v) · (v − b(v)) out of the sum on the left-

hand side and 1
F (v) out of the sum on the right-hand side, and using that

∑

j 6=i βi,j = dβ

and βi,i = α for all i, we simplify further to

α · (n− 1) · f(v)
F (v)b′(v) · (v − b(v))− f(v)

F (v)b′(v) · dβ · (v − b(v)) = −(1− 1
F (v)) · dβ.
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Rearranging yields the differential equation b(v) = v + −βd·(1−F (v))·b′(v)
((n−1)α−βd)·f(v) , which has

the solution

b(v) = 1

(1−F (v))
1+

(n−1)α
βd

·
∫ 1
v x · (1 + (n−1)α

βd ) · (1− F (x))
(n−1)α

βd f(x)dx.

Thus, we have proved the theorem.

Note similarly that the bidding function can be interpreted as the expectation of the

lowest of 1 + (n−1)α
βd private values above v. Substituting the uniform distribution over

[0, 1] for F gives us the following corollary:

Corollary 7.2.5 There is a symmetric Bayesian Nash equilibrium for the second-price

auction with all bids independently and uniformly drawn from [0, 1] in which all bidders

bid

b(v) = (1 + βd
(n−1)α−2βd ) · v −

βd
(n−1)α−2βd .

Again, when d = n − 1, Theorem 7.2.4 and Corollary 7.2.5 subsume the results

for second-price auctions with uniform spite by Brandt et al. [14] who showed that

b(v) = v−β
1−β (with α = 1 + β), and those by Morgan et al. [69] (with α = 1). By

combining Corollaries 7.2.3 and 7.2.5, we can compare the expected revenues of the

first-price auction and second-price auction.

Theorem 7.2.6 Assume that the social graph is regular, with uniform spite/friendship

values β < α, and that the valuations of all bidders are drawn independently and uni-

formly from [0, 1]. Then,

122



www.manaraa.com

1. In the presence of uniform spite (β < 0), the expected revenue of the second-price

auction dominates the expected revenue of the first-price auction.

2. In the presence of uniform altruism (β > 0), the expected revenue of the first-price

auction dominates the expected revenue of the second-price auction.

Proof. Let bF and bS denote the bidding functions for first- and second-price auctions,

respectively. Also, let V(1) and V(2) be the highest and second-highest valuations among

all bidders, respectively. Notice that because all bidders use the same bidding function,

the highest valuation always corresponds to the highest bid, and the second-highest

valuation to the second-highest bid.

The revenue of the first-price auction is thus bF (V(1)), while the revenue of the second-

price auction is bS(V(2)). Notice that both bidding functions are linear, so we can use

linearity of expectations. Furthermore, E
[

V(1)
]

= n
n+1 , and E

[

V(2)
]

= n−1
n+1 . Substituting

these in the bidding functions of Corollaries 7.2.3 and 7.2.5 gives us that

E
[

bF (V(1))
]

= (1− α
n·α−βd) · n

n+1 = (n−1)α−βd
n·α−βd · n

n+1 ,

E
[

bS(V(2))
]

= (1 + βd
(n−1)α−2βd ) · n−1

n+1 −
βd

(n−1)α−2βd = (n−1)α−βd
(n−1)α−2βd · n−1

n+1 − βd
(n−1)α−2βd .

The difference is

E
[

bS(V(2))
]

− E
[

bF (V(1))
]

= (n−1)α−βd
(n−1)α−2βd · n−1

n+1 −
βd

(n−1)α−2βd − (n−1)α−βd
n·α−βd · n

n+1

= (n−1)·(n·α−βd)((n−1)α−βd)−n·((n−1)α−2βd)·((n−1)α−βd)
(n+1)·((n−1)α−2βd)·(n·α−βd) − βd

(n−1)α−2βd

= −βd·(n·α−βd)
((n−1)α−2βd)·(n·α−βd) −

−α(n−1)βd+(βd)2

((n−1)α−2βd)·(n·α−βd)

= −βd·α
((n−1)α−2βd)·(n·α−βd) .
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Notice that the denominator is positive for all values of d and all β ∈ (−1, 1). The

numerator has the same sign as β. Thus, in the presence of uniform spite, the expected

revenue of the second-price auction dominates the first-price auction. In the presence of

uniform altruism, the expected revenue of the first-price auction dominates the second-

price auction.

7.2.2 Uniform Valuations

Next, we consider the case of general matrices B with βi,i > 0 for all i and βi,i > |βi,j | for

all j 6= i, but under the assumption that all valuations are independently and uniformly

drawn from [0, 1], i.e., F (x) = x for x ∈ [0, 1].

In this case, for first-price auctions with arbitrary B, we still do not know how to

solve the corresponding differential system. Nonetheless, we can calculate a Bayesian

Nash Equilibrium for first-price auctions explicitly if B is a non-negative triangular

or block matrix, because there happens to be a Nash Equilibrium where each bidder

bids bi(v) = γiv for some constant γi. Unfortunately, a guess of bi(v) = γiv, or even

bi(v) = γiv + ξi, does not appear to lead to a solution of the corresponding differential

system for second-price auctions, and we are not aware of any explicit characterization

of an equilibrium of the second-price auction here.

Definition 7.2.7 A non-negative upper triangular altruism matrix B is an altruism/spite

matrix with βi,j ≥ 0 for j > i and βi,j = 0 for j < i, and βi,i > βi,j for all i, j 6= i.

Intuitively, this definition captures scenarios where the “friending power” of players is

very asymmetric and according to some kind of ranking. Player i has friending power

124



www.manaraa.com

to choose to be altruistic, i.e., βi,j > 0, or not, i.e, βi,j = 0, to any player j for j > i.

However, player i does not have friending power to any player j for j < i so it must be the

case that βi,j = 0 for j < i. Notice that a player’s friending power may not necessarily

be proportional to his outdegree in the social or economic network. We study this

model mostly because it is mathematically tractable, while it is doubtful how much it

would capture real-world scenarios. Nevertheless, it somehow reflects the asymmetry of

knowing and caring about other people in the real world.

Theorem 7.2.8 Assume that all valuations are drawn independently and uniformly from

[0, 1]. Let B be a non-negative upper triangular altruism matrix and C a matrix with

entries ci,i = −(n − 1) and ci,j =
βi,j

βi,i
for i 6= j so ci,j ≥ 0 for j > i and ci,j = 0 for

j < i. Then, there is a Bayesian Nash equilibrium for first-price auctions with B, where

each bidder i bids bi(vi) that satisfies

1. bi(vi) = γivi with

γi = det(C)
det(C)−det(Ci)

,

where Ci is formed by replacing the ith column of C by all 1’s

2. bi+1(1) ≥ bi(1) for 1 ≤ i ≤ n− 1.

Proof. Let λi = 1 − 1
γi

for all i. We first see that λi =
det(Ci)
det(C) solves −(n − 1)λi +

∑

j>i
βi,j

βi,i
λj = 1 for all i by Cramer’s rule. (Equivalently, the vector λ of all λi entries

solves C · λ = 1.) This is equivalently saying that γi =
det(C)

det(C)−det(Ci)
solves for all i,

(n− 1)βi,i(
1

γi
− 1) +

∑

j>i

βi,j(1−
1

γj
) = βi,i. (7.7)
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We then see that λ1 ≤ λ2 ≤ ... ≤ λn: since −(n − 1)λi +
∑

j>i
βi,j

βi,i
λj = 1 for all i,

we can verify these inequalities by simply knowing that λn = −1/(n − 1) and
βi,j

βi,i
≥ 0

for all j > i. Thus, γ1 ≤ γ2 ≤ ... ≤ γn. The inequality on the bi(1) now follows, i,e,

b1(1) ≤ b2(1) ≤ ... ≤ bn(1).

For each bidder i, (b−1
j )′(bi(v)) = 1

γj
, and b−1

j (bi(v)) =
γi
γj

· v due to bi(v) = γiv. The

system (7.7) becomes for all i,

∑

j 6=i

βi,i(v − bi(v)) ·
b−1
j

′
(bi(v))

b−1
j (bi(v))

+
∑

j>i

βi,j(bi(v)− b−1
j (bi(v))) ·

b−1
j

′
(bi(v))

b−1
j (bi(v))

= βi,i. (7.8)

Since b1(1) ≤ b2(1) ≤ ... ≤ bn(1), we know that bj(1) ≥ bi(v) for all j > i. Therefore,

along with βi,j = 0 for all j < i, this system (7.8) becomes for all i,

∑

j 6=i βi,i(v − bi(v)) ·
b−1
j

′

(bi(v))

b−1
j (bi(v))

+
∑

j 6=i,bj(1)≥bi(v)
βi,j(bi(v) − b−1

j (bi(v))) ·
b−1
j

′

(bi(v))

b−1
j (bi(v))

= βi,i.

With F (x) = x and f(x) = 1 for all x ∈ [0, 1], this system is equivalent to the general

system (7.3). We have shown that there is a Bayesian Nash equilibrium for first-price

auctions with B, where each bidder i’s bid satisfies (1) and (2).

If we solve the system explicitly for the bidding functions, we will see that players

with more “friending power” actually bid less aggressively (with bi(1) = γi smaller),

which roughly agrees with our intuition.

Another natural special case which can be solved easily using our general result (7.3)

in Lemma 7.2.1 is that of disjoint cliques of friends in an auction. The bidders form

g disjoint groups S1, . . . , Sg. Within group Sk, all bidders have altruism β(k) to each
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other (and βi,i = 1). Across groups, bidders are indifferent, i.e., a bidder’s altruism or

spite level towards any other bidder who is not in his group is 0. Then, C is a block

matrix, and the system of linear equations can be solved for each block separately. Due

to symmetry, within each group Sk, all bidders will use the same bidding strategy, i.e.,

λi = λj =: λ(k) whenever i, j ∈ Sk. The linear equality thus simplifies to −(n− 1)λ(k) +

(|Sk| − 1) · β(k) · λ(k) = 1, with the solution λ(k) = 1
(|Sk|−1)·β(k)−(n−1)

. Substituting this

into the definition of γi, we obtain the following corollary:

Corollary 7.2.9 If the bidders form disjoint cliques Sk with mutual altruism β(k), and

all valuations are drawn uniformly from [0, 1], then there exists a Bayesian Nash Equi-

librium in which each bidder i ∈ Sk bids n−1−β(k)(|Sk|−1)

n−β(k)(|Sk|−1)
· vi.

Notice that this corollary reveals several interesting tendencies. First, both λi and γi

are always less than 1, and decreasing in |Sk| and β(k). This is not entirely unexpected,

as bidders in large or tightly knit cliques feel less of a need to win the auction themselves,

since they are more likely to derive utility from a friend’s winning. What is perhaps more

surprising is that the bidding strategy of a clique Sk does not depend on how large or

tightly knit another group Sk′ is. While this follows readily from our general result, it is

not at all apparent a priori, since another tightly knit group might bid lower, allowing

group Sk to lower its bids safely as well.

Remark 7.2.10 (Altruism Changes) We would like to investigate how bidder i’s

strategy changes if her altruism level βi,j toward another member of the network changes

in an auction with a triangular altruism matrix or a block altruim/spite matrix. One

would intuitively expect that if bidder i’s altruism toward bidder j increases, then bidder
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i will always bid lower, i.e., decrease γi, because she derives more utility from bidder

j’s winning. (Indeed, for disjoint cliques, this intuition is borne out.) However, it may

turn out that this is not always the case. Our partial results show that in response to the

change of one βi,j , the entire network’s strategies adapt, and in some cases, this means

that bidder i will lower her bid.

Remark 7.2.11 (Calculating the Efficiency and Revenue) It would also be inter-

esting to calculate the efficiency and revenue of an auction with a triangular altruism

matrix or a block altruim/spite matrix. Since γi can be solved explicitly for these two

cases, calculating the expected value of the winning bid seems possible. We leave the

analysis of efficiency and revenue (and thus the Price of Anarchy and Price of Stability)

for future work.

7.3 Conclusions and Future Work

We extended the analysis of auctions with spite and altruism among agents to the case

of non-uniform spite matrices. We gave explicit characterizations of Nash Equilibria for

first-price auctions with valuations drawn uniformly from [0, 1] and triangular altruism

matrices or block spite/altruism matrices B, and for first- and second-price auctions with

arbitrary valuations and regular social networks.

Many questions remain for future work. For Bayesian auctions, we would first like to

move beyond non-negative upper triangular matrices for first-price auctions even only

with uniformly distributed valuations. Then, can we find a Nash Equilibrium for first-

and second-price auctions in general? It appears that this is significantly more complex:
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the fact that first-price auctions had a Nash Equilibrium in which each bidder simply

multiplies her bid by a constant was fortuitous. Also, can we extend the analysis of

first-price auctions to other distributions, or to priors that are not identical for different

bidders?

Having characterized the Nash Equilibrium bidding strategies, we would also like to

explicitly compute the revenue and social welfare of the auction. The main obstacle

here is to find the expected value of the winning bid, which is now a maximum among

n values drawn from different distributions. Calculating the revenue or social welfare

would also let us quantify the impact of spite or altruism on the outcome of the auction.

Another intriguing question is whether agents can learn equilibrium bidding strategies

using a natural algorithm. Assuming that each agent knows the entire matrix B is

certainly unrealistic. Are there simple strategies (in the style of [10]) wherein each

bidder adapts her bidding strategy based on the utility derived from earlier auctions?

Another auction model to consider non-uniform spite is full-information auctions

where bidders know each other’s valuations. For full-information auctions, a large num-

ber of questions remain as well. We can start with a model where each bidder just has

one spite level as his parameter (different bidders can have different spite levels). For

the case of two bidders with full-information, we may want to characterize all ǫ-Nash

Equilibria since Nash Equilibria may not exist, and use this characterization to design

auctions minimizing the Price of Anarchy or Price of Stability. Then, we would like to

extend our results beyond two bidders. This is non-trivial: for instance, even for three

bidders, it is possible to construct scenarios with different Nash Equilibria, in which

different bidders win. However, the main difficulty in designing optimal auctions is that
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in general, there is not much correlation between the bidder winning the spiteful auction

and the bidder winning at the social optimum. Should an extension to larger numbers

of bidders succeed, the next step would be to consider arbitrary matrices B again, and

to characterize all ǫ-Nash Equilibria in that case. It would also be interesting to prove

that the optimal mechanism (in terms of minimizing the PoA or PoS) in all cases must

be a simple linear scaling of each bid by a factor depending on spite levels.

Finally, we would like to extend these results beyond single-item auctions to more

complex settings. A particularly promising direction would be the context of keyword

auctions [59], as well as various combinatorial settings: for example, path auctions (a

special case of auctions on a set systems), where an auctioneer tries to buy a path from

bidders residing on edges in a graph; given the structure of bidders inherent from the

auction’s nature, how the friend or foe relations are formed is not even clear in this

context.
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Chapter 8

Discussion, Conclusions, and Future Work

8.1 Discussion and Conclusions

Standard game theory has traditionally posited the assumption that individual players

are selfish and rational. They only care about the outcome of an economic interaction

and their personal gain and loss through the interaction, not other players’ gain and

loss. However, our experiences and experiments in laboratories sometimes profoundly

contradict this. For instance, our caring for the welfare of society or underprivileged

people could drive us to some altruistic behavior sometimes, even sacrificing our own

benefits. Our concern for the environment could guide us to some environmentally-

friendly decisions, sometimes even giving up our own convenience. This could happen

even when we know that the effect of a single person’s decision is negligible. Furthermore,

how can we explain a few players’ contribution to the common pool in the experiments

for public goods contribution games (see [57] for more discussion)? How can we explain

a bidder’s dislike for the winning of some competing bidders and indifference for that of

other irrelevant bidders, which are not discussed in the standard auction setting where
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only allocation matters? There may be some psychological account for such regard in a

player’s interest, which would lead us to a more general interpretation of game theory

via a more general utility theory. We think that a model that takes into account altruism

and the opposite of it, spite or negative altruism, in real humans would be a better model

of how real humans actually behave.

On the other hand, standard selfish theory usually predicts bad outcomes in terms

of some global measures. It would be very interesting to see what we can do with

our model that incorporates altruism and spite in real humans via defining players’

“perceived” utility functions. We want to investigate whether standard game theory is

too pessimistic (or maybe it turns out to be too optimistic) about what will happen with

real humans in a system by revisiting some global measures on outcomes with our model.

We can see that monetary offsets (such as taxes and tolls) added to individual players’

payoffs have been designed to incentivize selfish players to deviate towards considering

social welfare. Our consideration of altruism, which means empathy for others, can thus

be viewed as in effect playing a similar role as such monetary terms.

We consider altruism as well as spite, i.e., negative altruism, in the model, since

the opposite of altruistic behavior, spiteful behavior, can also be observed in reality.

For instance, consider a scenario of players situated in social networks, where players’

previous or future interactions affect them to form dislikes or preferences towards other

players. A player would possibly experience a negative utility when some player that he

has spite towards gains benefits.

Our choice for the model assumes that each player’s (perceived) utility is a linear

combination of his own payoff and all the other players’ payoffs, given the social welfare
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as the global objective that we are looking at. We call a player’s own payoff the selfish

part and the rest,1 roughly corresponding to the other players’ payoffs, the altruistic

(spiteful) part. An obvious advantage of this model is simplicity, which at the same time

does not prevent us from meaningful and interesting analysis. Besides simplicity, we will

first argue that the altruistic part and the global objective that we are concerned with

should be considered together as a bundle. We specifically consider a utilitarian social

welfare, i.e., the sum of all players’ utilities, as the objective, so our current choice for

perceived utility functions is a match. Then, we will argue that linearly combining the

selfish and altruistic parts is a natural choice from the economic literature. On the other

hand, the choice for equilibrium solution concepts is actually independent from the choice

for players’ utilities, since no matter how players’ utility functions change, we still need

to analyze the system at some kind of steady state. Thus, Nash equilibria are still the

first natural choice for analyzing a one-shot game with full information, and Bayesian-

Nash equilibria are a natural choice for a Bayesian setting, though both of them are

not necessarily the only choices. Due to several known hardness results for finding Nash

equilibria, recent work has begun analyzing the outcomes of natural response dynamics

and more permissive solution concepts such as correlated or coarse correlated equilibria.

In Chapter 5, we explored the analysis for more permissive equilibrium concepts for

congestion games.

We are particularly interested in the effects of altruism on the utilitarian social wel-

fare, which is the global objective that we are concerned with in this proposal. It is

quite intuitive to model altruism as a perceived utility function with the altruistic part

1If we use the social welfare or the average social welfare here, the altruistic part may still contain at
least some fraction of a player’s own payoff.
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that reflects this utilitarian social welfare, which shows altruistic players’ caring for the

global objective. Nevertheless, the utilitarian social welfare may not be the only global

objective that can represent and measure what happens in a system. In other words, the

function for the altruistic part is not a fixed choice but goes with the global objective.

For instance, if the objective is not the utilitarian social welfare, but the minimum utility

among all the players2, and we want to maximize such a minimum utility, then our cur-

rent choice for the altruistic part may not be the right choice anymore. Notice that it is

also possible that even though the utilitarian social welfare looks at the sum of utilities,

an individual’s altruism could be about helping the minimum utility, or the other way

round. This means that it is not necessary that a player’s altruistic part agrees with the

global objective. In this thesis, we only consider the models with an agreement between

the choices of individual altruism and the global objective.

Actually, one of the future directions is to consider other interesting objective func-

tions as well as their corresponding altruistic part designs. More broadly, what is the

relationship between the choice of an objective function and the choice of the altruistic

part to induce meaningful effects? For example, maybe considering a weighted utilitar-

ian objective function is interesting. Even for the purely selfish model, not too many

different objective functions have been explored.

Although our altruistic part was originally motivated to reflect a psychological ac-

count for altruistic/spiteful behavior, it can also be interpreted as a monetary term

usually used to suppress selfish behavior in economics, i.e., taxes or tolls. That is, our

design can be considered as a “psychological toll”, while the other is a “monetary toll”.

2In selfish routing, besides the average latency objective (the social cost), Roughgarden also considered
the maximum latency objective to minimize [79].
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If looking at the altruistic part this way, a linear combination of the selfish part and

the altruistic part as a perceived utility can be generally viewed as a quasi-linear utility

function in the microeconomic literature [65]. Quasi-linear utility functions are linear

in one argument, generally the monetary term. Formally, such a utility function could

be written as U(x, y) = u(x) + by, where b is a constant. Quasi-linearity is one of the

restrictions on utility functions that enable us to draw inferences about all indifference

curves between consumption of commodities x and y from a single curve. With quasi-

linearity, the indifference curves can be shifted outward as consumption of y increases

without changing their slope. Quasi-linearity also allows us to trade off smoothly between

u(x) and y using the same unit, which a non-quasi-linear utility may not provide.

We would like to point out that the choice for the equilibrium solution concept

(theory of play) is independent from the choice for utility functions (theory of utility).

Equilibrium solution concepts provide a way to analyze the system at a steady state

where no individual player wants to deviate, given that every player is driven by the

utility function that he perceives. No matter what is the choice of the utility func-

tion, we need to use a reasonable and natural solution concept. After all, game theory

consists of two parts: theory of play and theory of utility. Currently, we think that

intuitively Nash equilibrium for full-information games and Bayesian-Nash equilibrium

for a Bayesian setting would be the first natural choices, when applying these stronger

equilibrium solution concepts is possible (when they exist). Nonetheless, we also adopt

more permissive equilibrium concepts such as mixed Nash equilibria, correlated equi-

libria, and coarse correlated equilibria in Chapter 5. This also means that we do not
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have to stick with some equilibrium concept if there exists no such a equilibrium. No-

tice that there are other equilibrium solution concepts that we probably do not want

to use here. For example, dominant strategies may not exist for traffic routing due to

the nature of the problem under study; iterated best response may cause cycles so the

convergence can be unclear. For now, our work is more about analyzing a steady state

given enough information and less about how strategies are derived and equilibrium is

reached. Since we are planning to consider repeated games with learning where a Nash

equilibrium may not be reached, equilibrium solution concepts such as ǫ-Nash equilibria

or more permissive solution concepts like correlated equilibrium will become more and

more attractive.

We demonstrated that our proposed model of altruism with current choices for play-

ers’ utility functions and equilibrium solution concepts have effects on our current choice

of global objective, i.e., social welfare. The trend of impact from altruism is different

across classes of games. Improvements on the PoA are shown in some games while this

trend is not the case for the other games in which worsening of the PoA is proved. Nev-

ertheless, these choices are not just fixed but context-based, and what we are trying to

propose is not only a specific model but also a flexible framework to facilitate analyzing

the effects of altruism on the outcomes of strategic games and mechanisms. Further-

more, deciding truly what the “right” model is can be difficult. It may involve designing

experiments to support or disprove the theory that is based on the proposed models.

Thus, our work probably also suggests several interesting directions and problems for

experimental work.
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8.2 Future Work

We have summarized many interesting concrete extended questions in their correspond-

ing related chapters. Now, we propose a few future directions in a bit more detail.

8.2.1 Learning in Repeated Games

In the real world, people often face a situation where they get to play a game multiple

times or even for a long period of time. Then, how does a player choose his strategy in

each run of such a repeated game? What kind of equilibria will the game converge to?

How good or bad will the social welfare be at such equilibrium? These are all interest-

ing questions to ask about repeated games, and they have been studied, for instance,

fictitious play, under the theory of learning in games [39]. Intuitively, people will adapt

their decisions run by run, which means that players would learn to play in repeated

games. Among others, no-regret algorithms, which we will formally define later, is one

of the most popular classes of learning algorithms with certain desirable properties. For

example, there are works using no-regret algorithms to ensure convergence to ǫ-Nash

equilibrium (their definition of ǫ-Nash equilibrium is a variation of the standard defini-

tion) [10] and analyzing the Price of Total Anarchy (at coarse correlated equilibrium)

when everyone plays no-regret algorithms [11].
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A no-regret sequence σ1, ..., σT of probability distributions over strategy profiles is

defined by the property that the total expected payoff of each player is at most o(T ) less

than that of the best fixed strategy in hindsight. Formally, for all i and s′i ∈ Si,

E[

T
∑

t=1

pi(s
t)] ≥ E[

T
∑

t=1

pi(s
′
i, s

t
−i)]− o(T ),

where st ∼ σt and st−i ∼ σt−i for every t. Intuitively, when each player plays the game

more and more times, his total expected payoff will get closer and closer to that of the

best fixed strategy in hindsight. Various no-regret algorithms are guaranteed to generate

a no-regret sequence, for example, the multiplicative weights learning algorithm [61, 38]

is a popular no-regret algorithm.

With our model of altruism and spite, there are more questions to be asked. In

general, when we assume that the (especially, non-uniform) altruism levels are given, we

would be interested to know how players with different altruism levels would converge

to some kind of equilibrium within a reasonable number of time steps, as well as the

PoA/PoS at such an equilibrium. (Recall that we have already analyzed the PoA at

coarse correlated equilibria for linear congestion games in Section 5.2.) Furthermore, if

the altruism levels are not given, a natural question would be how every player adaptively

learns his equilibrium strategy, which means implicitly learning these altruism levels. In

the following, we try to specify these questions in more concrete problem settings that

we have studied.

No-regret algorithms have been shown to give fast convergence to ǫ-Nash equilibria

for the standard selfish routing model [10]. The per-time-step regret of a user is defined
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as the difference between her average latency and the latency of the best fixed path in

hindsight. That is, formally,

1

T

T
∑

t=1

ct −min
P∈P

1

T

T
∑

t=1

∑

e∈P
ce(f

t
e),

where ce is the edge cost function, T is the number of time steps, f1, ..., fT is a series

of flows, and a user experienced latencies c1, ..., cT . An algorithm is no-regret if, for any

sequence of flows, the expected regret over internal randomness in the algorithm goes

to 0 as T goes to infinity. In particular, if each user runs a no-regret algorithm, the

average regret over all users, i.e., 1
T

∑T
t=1

∑

e∈E ℓe(f
t
e)f

t
e − 1

T minP∈P
∑T

t=1

∑

e∈P ℓe(f
t
e),

also approaches 0. So it can be assumed that a function R(T ), which is an upper bound

on the average regret, goes to 0 as T goes to infinity, i.e.,

1

T

T
∑

t=1

∑

e∈E
ℓe(f

t
e)f

t
e ≤ R(T ) +

1

T
min
P∈P

T
∑

t=1

∑

e∈P
ℓe(f

t
e),

where R(T ) depends on the network size, n, and the maximum possible latency. Then,

Tǫ is defined as the number of time steps that it takes to get R(T ) = ǫ. However, it is

possible for a flow f to have regret near 0 and yet still be far from a true Nash flow. We

cannot expect that all users are taking cheapest paths at any time. We can only expect

that most users take a nearly-cheapest path given a flow f . That is to say, equivalently,

that a flow f is at ǫ-Nash equilibrium if the average cost under this flow is within ǫ of

the minimum cost path under this flow,i.e., C(f)−minP∈P
∑

e∈P ℓe(fe) ≤ ǫ.
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Among other results, it was mainly shown that for no-regret algorithms, the time-

averaged flow f̂ is approaching equilibrium [10]. Specifically, for a given Tǫ, bounds on

the number of time steps before f̂ is ǫ-Nash are obtained. This is basically showing

that no-regret algorithms can be used to arrive at ǫ-Nash equilibrium for entirely selfish

users. Therefore, naturally we would then want to ask how partially altruistic or spiteful

users use no-regret algorithms to arrive at some kind of equilibrium as well. What is

the impact of our altruistic and spiteful model on the convergence to equilibria? How

will the convergence time change? The impact of uniform altruism and spite may be not

hard to establish, but the impact of non-uniform altruism or spite is still challenging.

Similar questions can be asked for (non-uniform) partially altruistic or spiteful users in

atomic congestion games and other games, too.

When the altruism/spite matrix is not given, in the auctions setting, a bidder can-

not use it to directly compute his bid so he must learn from the results (utilities) of

earlier runs of auctions thereby to adjust his bid accordingly. We want to find learning

algorithms that can gradually lead to equilibria, i.e., converging to the correct bids that

altruistic bidders should have, within a reasonable number of runs. In the routing or

congestion games setting, a player also needs to adaptively learn his choice of a route or

resources, which implicitly involves learning the unknown (non-uniform) altruism levels

of the other players. It is not clear if we can directly use certain learning algorithms such

as no-regret algorithms that we employ when the altruism levels are given.

In another line of work, we have the PoA results where every player is running no-

regret algorithms with uniform altruism, i.e., the coarse PoA with uniform altruism,

in linear congestion games. Extending these results to non-uniform altruism may be
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technically challenging. Similar questions can be asked in the non-atomic setting and

even for other games as well.

8.2.2 Other-Regarding Payoffs

Broadly, we would like to think beyond our current model of altruism and spite under

which we try to capture the relation between not entirely selfish behavior and social

welfare. In Chapter 3, we have seen several different models of other-regarding payoff

functions focusing on different notions. Here, as an example of one of the future directions

along this line, we are going to discuss another model that has been defined for inequity

averse and reciprocal players, its impact on cooperation was shown in some simple classic

games [34]. This may further motivate us to formally analyze the effects of inequity averse

and reciprocal behavior on certain global measures capturing overall cooperation in the

society.

Fehr and Schmidt [33] proposed a model capturing some sense of “fairness” in which

a player is altruistic towards other players if their original payoffs are below an equitable

benchmark but is spiteful when the other players’ original payoffs are more than this

benchmark. In several applications, for example, resource allocation, it seems natural to

assume that an equitable allocation is an equal original payoff for all players. They use

the following utility function to capture the notion of inequity aversion.

pi(x1, ..., xn) = xi −
αi

n− 1

∑

j 6=i

max{xj − xi, 0} −
βi

n− 1

∑

j 6=i

max{xi − xj , 0}
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Table 8.1: Prisoners’ dilemma (Table 1 of [34]).

Player 2 Cooperate Player 2 Defect

Player 1 Cooperate (2,2) (0,3)

Player 1 Defect (3,0) (1,1)

Table 8.2: Prisoners’ dilemma for inequity averse players (Table 2 of [34]).

Player 2 Cooperate Player 2 Defect

Player 1 Cooperate (2,2) (0− 3α, 3 − 3β)

Player 1 Defect (3− 3β, 0− 3α) (1,1)

with 0 ≤ βi ≤ αi (note that ∂pi
∂xi

≥ 0 if and only if xi ≥ xj), where xi is the original

payoff allocated to player i. Intuitively, players experience inequity if they are worse off

in their material terms than the other players, and they feel inequity if they are better

off; players suffer more from inequity that is to their disadvantage in original payoffs

than from inequity that is to their advantage in original payoffs.

Now, using this definition of an inequity averse player’s perceived utility function,

the original utilities in a two-player prisoners’ dilemma in Table 8.1 give the perceived

utilities in Table 8.2. For two players, the perceived utility of player i is xi −αi(xj − xi)

if player i is worse off than player j (i.e., xj − xi ≥ 0) or xi − βi(xi − xj) if player i is

better off than player j (i.e., xi − xj ≥ 0). Here, the two players are assumed to have

the same parameters, i.e., α1 = α2 = α and β1 = β2 = β.

If player 2 is expected to cooperate, player 1 would choose between utility allocations

(2,2) and (3,0). The perceived utility of player 1 at (2,2) is 2 since there is no inequity;

the perceived utility of player 1 at (3,0) is 3−3β since there is inequity in which player 1

is better off. Thus, player 1 will reciprocate the expected cooperation of player 2 if β > 1
3 .
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Given player 1’s defection, if player 2 cooperates, the perceived utility of player 2 is then

0 − 3α; yet, if player 2 defects instead, the utility would become 1. This is saying that

player 2 will always reciprocate defection because cooperating while the other defects

gives less utility and more inequity. In Table 8.2, if β > 1
3 , there are two equilibria:

Both cooperate and both defect. If the players believe that the other player cooperates,

it is rational for each of them to cooperate. Inequity averse and reciprocal players are

therefore conditional cooperators. They reciprocate cooperation in response to expected

cooperation and defection in response to expected defection.

A prisoners’ dilemma game is this basically turned into a cooperation game. Moti-

vated by this, taking a step further, we would like to systematically explore and analyze

the impact of inequity averse and reciprocal players in terms of certain global measures

reflecting the cooperation level in the system for some suitable class of games. We are

not trying to find a right or ultimate model with other-regarding payoffs, but more to

explore the connection between the utility theory and the global measure that we are

optimizing in general.
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